Tìm nghiệm của phương trình :
1. xy=5(x+y)
2. xy =6(x+y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+x\left(5y-7\right)+5y^2-14y=0\)
\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)=-75y^2+210y+49\)
Để PT có nghiệm nguyên thì \(\Delta\ge0\)
từ đó tìm được các giá trị nguyên của y, rồi tìm được x
\(x^2+x+xy-2y^2-y=5\)
\(\Leftrightarrow2x^2+2x+2xy-4y^2-2y=10\)
\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+2y+1\right)+\left(x^2+2xy+y^2\right)\)\(-4y^2=10\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2+\left(x+y\right)^2-4y^2=10\)
\(\Leftrightarrow\left[\left(x+1\right)^2-4y^2\right]+\left[\left(x+y\right)^2-\left(y+1\right)^2\right]=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1\right)+\left(x-1\right)\left(x+2y+1\right)=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1+x-1\right)=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(2x-2y\right)=10\)
\(\Leftrightarrow2\left(x+2y+1\right)\left(x-y\right)=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x-y\right)=5\)
Vì \(x,y>0\left(x,y\inℤ\right)\Rightarrow x+2y+1\inℤ^+\)
Mà \(\left(x+2y+1\right)\left(x-y\right)=5\)
Do đó \(\left(x-y\right)\inℤ^+\)
Vì \(x+2y+1\ge x-y>0\)(vì \(x;y\in Z^+\))
\(\Rightarrow\left(x+2y+1\right)\left(x-y\right)=5.1\)
\(\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x=y+1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y+1+2y+1=5\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}3y+2=5\\x=y+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y=3\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)(thỏa mãn \(x,y\inℤ^+\))
Vậy phương trình có nghiệm nguyên dương \(\left(x;y\right)=\left(2;1\right)\)
Lưu ý : tớ ghi \(ℤ^+\)là chỉ số nguyên dương, ghi vào vở bạn nên ghi là "số nguyen dương" thôi.