Bài 1: Tính bằng cách thuận tiện nhất.
1/1.1/2+1/2.1/3+1/3.1/4+1/4.1/5
Các bạn giúp mình nha.Cảm ơn các bạn nhiều💝
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =2(3h15'+4h45')=2x8h=16h
b: =(24'30s+25'30s):5
=50':5=10'
3) Ta có : \(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
4)
A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
A = \(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{99}-\frac{1}{101}\right)\)
A = \(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
A = \(\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(A=\frac{1}{2}.\frac{100}{101}\)
A = \(\frac{50}{101}\)
2, đặt tên biểu thức trên là A. Ta có :
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(A=1-\frac{1}{101}\)
\(A=\frac{100}{101}\)
1) \(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(=1-\frac{1}{5}\)
\(=\frac{4}{5}\)
\(\frac{2}{3}\times\frac{4}{5}+\frac{4}{5}\times\frac{1}{2}+\frac{4}{5}\times\frac{1}{6}\)
\(=\left(\frac{2}{3}+\frac{1}{2}+\frac{1}{6}\right)\times\frac{4}{5}\)
\(=\frac{4}{3}\times\frac{4}{5}\)
\(=\frac{16}{15}\)
\(\dfrac{9}{10}\times2+3\times\dfrac{9}{10}+\dfrac{9}{10}:\dfrac{1}{5}\)
\(=\dfrac{9}{10}\times2+\dfrac{9}{10}\times3+\dfrac{9}{10}\times5\)
\(=\dfrac{9}{10}\times\left(2+3+5\right)\)
\(=\dfrac{9}{10}\times10\)
\(=\dfrac{90}{10}\)
\(=9\)
\(\frac{1.3.5+2.6.10+4.12.20+7.21.35}{1.5.7+2.10.14+4.20.28+7.35.49}\)
\(=\frac{1.3.5\left(1+2+4+7\right)}{1.5.7\left(1+2+7+7\right)}=\frac{1.3.5}{1.5.7}=\frac{15}{35}=\frac{3}{7}\)
\(\frac{1\cdot3\cdot5+2\cdot6\cdot10+4\cdot12\cdot20+7\cdot21\cdot35}{1\cdot5\cdot7+2\cdot10\cdot14+4\cdot20\cdot28+7\cdot35\cdot49}\)
\(=\)\(\frac{1\cdot3\cdot5\cdot\left(1+2+4+7\right)}{1\cdot5\cdot7\cdot\left(1+2+7+7\right)}\)
\(=\frac{1\cdot3\cdot5}{1\cdot5\cdot7}\)\(=\frac{15}{35}=\frac{3}{7}\)
bn vội quá viết nhầm lun kìa
hj hj chúc bn làm bài tốt nha
Ta có :
\(A=\frac{1}{3}-\frac{3}{4}-\left(-\frac{3}{5}\right)+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(\Rightarrow A=\frac{5}{15}-\frac{54}{72}+\frac{9}{15}+\frac{1}{72}-\frac{16}{72}-\frac{1}{72}+\frac{1}{15}\)
\(\Rightarrow A=\left(\frac{5}{15}+\frac{9}{15}+\frac{1}{15}\right)+\left(-\frac{54}{72}+\frac{1}{72}-\frac{16}{72}-\frac{2}{72}\right)\)
\(\Rightarrow A=1-\frac{71}{72}=\frac{1}{72}\)
đáp án là 4/5
1/1.2+1/2.3+1/3.4+1/4.5+.................+1/9990999.9991000
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.................+1/9990999-1/9991000
=1-1/9991000
=9990999/9991000