K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHI và ΔADI có 

AH=AD

HI=DI

AI chung

Do đó: ΔAHI=ΔADI

b: Ta có: ΔADH cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

c: Xét ΔHAK và ΔDAK có

AH=AD

\(\widehat{HAK}=\widehat{DAK}\)

AK chung

Do đó: ΔHAK=ΔDAK

Suy ra: \(\widehat{ADK}=\widehat{AHK}=90^0\)

=>DK⊥AC

mà AC⊥AB

nên KD//AB

17 tháng 9 2019

Hk tốt

AH
Akai Haruma
Giáo viên
16 tháng 8 2021

Lời giải:

Ta thấy $n,n-3$ khác tính chẵn lẻ nên $n(n-3)$ chẵn 

$\Rightarrow n^2-3n+1$ lẻ. Do đó:

$25\equiv -1\pmod{13}$

$\Rightarrow 25^{n^2-3n+1}\equiv (-1)^{n^2-3n+1}\equiv -1\pmod {13}$

$\Rightarrow 25^{n^2-3n+1}-12\equiv -13\equiv 0\pmod {13}$

Vậy $25^{n^2-3n+1}-12$ luôn chia hết cho $13$ với mọi $n$ nguyên dương 

Do đó để nó là snt thì $25^{n^2-3n+1}-12=13$

$\Leftrightarrow n^2-3n+1=1$

$\Leftrightarrow n(n-3)=0$

$\Leftrightarrow n=3$ (do $n$ nguyên dương)

17 tháng 8 2021

em hiểu rồi, cảm ơn ạ

23 tháng 7 2017

- Xét \(\Delta OAD\)có :   EA = EO (gt)      ;       FO = FD (gt)

= >       EF là đường trung bình của \(\Delta OAD\) =>   \(EF=\frac{1}{2}AD=\frac{1}{2}BC\) ( Vì AD = BC )                (1)

Xét \(\Delta ABO\) đều , có E là trung điểm AO =>   BE là đường trung tuyến của tam giác ABO =>  BE là đường cao của tam giác ABO

\(\Rightarrow BE⊥AC\left\{E\right\}\)

- Xét tam giác EBC vuông tại E , có : BK = KC =>  EK là trung tuyến ứng với cạnh BC trong tam giac vuông EBC

=>   \(EK=\frac{1}{2}BC\) (2)

- Xét tam giác OCD , có 

+ OD = OC ( Vì BD = AC và OB = OA =>   BD-OB = AC - OA  =>   OD = OC   )

\(\widehat{COD}=60^o\)( Vì tam giác OAB đều )

=> tam giác OCD đều 

-Xét tam giác đều OCD , có FO = FD =>   CF là trung tuyến của tam giác OCD  =>   CF  là đường cao của tam giác OCD

HAy  \(CF⊥BD\left\{F\right\}\)

- Xét tam giác FBC vuông tại F , có BK = KC (gt)

=> FK là đường trung tuyến của tam giác vuông FBC ứng với cạnh BC

=>  \(FK=\frac{1}{2}BC\)  (3)

TỪ (1) , (2) và (3) , ta có  :  \(EF=EK=FK\left(=\frac{1}{2}BC\right)\)

=>>>> tam giác EFK đều

23 tháng 7 2017

cảm ơn nhiều nha Trần Anh