tìm x biết
1/3+1/6+1/10+.............2/x(x+1)=2009/2010
giúp mình cái
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. x(x + 1) - x2 + 1 = 0
<=> x(x + 1) - (x2 - 1) = 0
<=> x(x + 1) - (x + 1)(x - 1) = 0
<=> (x - x + 1)(x + 1) = 0
<=> x + 1 = 0\
<=> x = -1
2. 4x(x - 2) - 6 + 3x = 0
<=> 4x(x - 2) - (3x - 6) = 0
<=> 4x(x - 2) - 3(x - 2) = 0
<=> (4x - 3)(x - 2) = 0
<=> \(\left[{}\begin{matrix}4x-3=0\\x-2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=2\end{matrix}\right.\)
3. x(x + 2) - 3(x + 2) = 0
<=> (x - 3)(x + 2) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
e) 96-5(2x-1)=41
5(2x-1)= 96-41
5(2x-1)=55
2x-1=55:5
2x-1=11
2x=11+1
2x=12
x=12:2
x=6
\(1,x^2+4x+4=0\\ \Rightarrow\left(x+2\right)^2=0\\ \Rightarrow x+2=0\\ \Rightarrow x=-2\\ 2,x^2+4x+4=0\\ \Rightarrow\left(x+2\right)^2=0\\ \Rightarrow x+2=0\\ \Rightarrow x=-2\\ 3,\left(x+1\right)^2+2\left(x+1\right)=0\\ \Rightarrow\left(x+1\right)\left(x+1+2\right)=0\\ \Rightarrow\left(x+1\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
x2+4x+4=0
(x+2)2=0
x+2=0
x=+-2
câu 1 giống câu 2
(x+1)2+2(x+1)=0
(x+1+2)(x+1)=0
Th1: x+3=0 Th2: x+1=0
x=-3 x=-1
vậy ...
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Rightarrow2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\Rightarrow\frac{1}{x+1}=\frac{1}{2011}\Rightarrow x+1=2011\Rightarrow x=2010\)
Vậy x=2010
Ta có: \(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x\left(x+1\right):2}=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=2\left(\frac{1}{2}-\frac{1}{x+1}\right)=1-\frac{2}{x+1}=\frac{2009}{2011}\)
\(\Rightarrow x=2010\).
Chúc em học tập tốt :)
\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right):2}=\frac{2009}{2011}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{2011}:2\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}\)
\(\frac{1}{x+1}=\frac{1}{2011}\)
=>x+1=2011
=>x=2010
1)
\(3\left(x-2\right)+4\left(x-1\right)=25\)
\(3x-6+4x-4=25\)
\(7x-10=25\\ 7x=35\\ x=5\)
2)
\(\left(5x-3\right)\left(x-2\right)=\left(x-1\right)\left(x-2\right)\)
\(\left(5x-3\right)\left(x-2\right)-\left(x-1\right)\left(x-2\right)=0\)
\(\left(x-2\right)\left(5x-3-x+1\right)=0\)
\(\left(x-2\right)\left(4x-2\right)=0\)
\(=>\left[{}\begin{matrix}x-2=0\\4x-2=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)
3)
\(\left(x-2\right)^2=4\left(x-1\right)^2\)
\(x^2-4x+4=4\left(x^2-2x+1\right)\)
\(x^2-4x+4=4x^2-8x+4\)
\(x^2-4x+4-4x^2+8x-4=0\)
\(-3x^2+4x=0\)
\(x\left(-3x+4\right)=0\)
\(=>\left[{}\begin{matrix}x=0\\-3x+4=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)