cho tam giác ABC nội tiếp đường tròn tâm O. Biết A=50 độ, B=65 độ. Kẻ OH vuông AB, OI vuông AC, OK vuông BC. So sánh OH, OK, OI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC có nên suy ra :
BC > AC > AB (cạnh đối diện góc lớn hơn thì lớn hơn)
Ta có AB, BC, AC lần lượt là các dây cung của đường tròn (O)
Mà BC > AC > AB nên suy ra:
OH < OI < OK (dây lớn hơn gần tâm hơn)
Xét ΔABC có \(\widehat{BAC}>\widehat{ABC}>\widehat{ACB}\)
mà BC là cạnh đối diện của góc BAC
và AC là cạnh đối diện của góc ABC
và AB là cạnh đối diện của góc ACB
nên BC>AC>AB
Xét (O) có
BC,AC,AB là các dây
BC>AC>AB
OH,OI,OK lần lượt là khoảng cách từ tâm O đến các dây BC,AC,AB
Do đó: OH<OI<OK
Ta có \(\widehat{A}>\widehat{B}>\widehat{C}\) nên \(BC>AC>AB\)
Do đó \(OH< OI< OK\)
Tam giác ABC có ˆA>ˆB>ˆCA^>B^>C^ nên suy ra:
BC > AC > AB (cạnh đối diện góc lớn hơn thì lớn hơn)
Ta có AB, BC, AC lần lượt là các dây cung của đường tròn (O)
Mà BC < AC > AB nên suy ra:
OH < OI < OK ( dây lớn hơn gần tâm hơn).
Chúc bạn học tốt !!!
a) Xét ΔABC có: BC < AB + AC (Bất đẳng thức tam giác)
Mà AD = AC (gt)
⇒ BC < AB + AD = BD
Mà OH là khoảng cách từ O đến dây BC
OK là khoảng cách từ O đến dây BD
⇒ OH > OK.( định lý về khoảng cách từ tâm đến dây)
b) Vì BD > BC
⇒
Kiến thức áp dụng
+ Trong một đường tròn, dây nào lớn hơn thì dây đó gần tâm hơn
+ Trong một đường tròn, dây lớn hơn căng cung lớn hơn.
Theo câu a ,BC > BD
Vì trong một đường tròn, dây cung lớn hơn căng cung lớn hơn nên :