A=1/1.5 + 1/5.9+..........+1/95.99 và B=1
Đề là so sánh A và B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)
-3a . \(\left(\dfrac{-1}{3}\right)\) < -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )
a < b
b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)
4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )
a < b
2.
a. Ta có: a < b
3a < 3b ( nhân cả 2 vế cho 3)
3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )
b. Ta có: a < b
-2a > -2b (nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)
c. Ta có: a < b
2a < 2b (nhân cả vế cho 2)
2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)
d. Ta có: a < b
3a < 3b (nhân cả 2 vế cho 3)
3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)
Ta có: 3 < 4
đến đây ko bắt cầu qua đc chắc đề bài sai
\(\frac{2}{1.5}+\frac{2}{5.9}+\frac{2}{9.13}+...+\frac{2}{95.99}\)
\(=\frac{1}{2}.\left(\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{95.99}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{95}-\frac{1}{99}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{2}.\frac{98}{99}\)
\(=\frac{49}{99}\)
Chúc cậu học tốt !!!
a) \(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{201.203}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{201}-\frac{1}{203}\)
\(A=\left(\frac{1}{3}-\frac{1}{203}\right):2=\frac{100}{609}\)
Các ý còn lại cx tách như vật nha
CT chung này \(\frac{x}{n\left(n+x\right)}=\frac{1}{n}-\frac{1}{n+x}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{201.203}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{201.203}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{201}-\frac{1}{203}\)
\(2A=\frac{1}{3}-\frac{1}{203}=\frac{200}{609}\)
\(A=\frac{100}{609}\)
Tương tự với b thôi.
a) \(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+\frac{1}{8\cdot10}\)
\(=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{5}=\frac{2}{10}=\frac{1}{5}\)
b) \(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}\)
\(=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}\)
\(=1-\frac{1}{17}=\frac{16}{17}\)
hok tốt ...
a)\(A=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+\frac{1}{8\cdot10}\)
\(2A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+\frac{2}{8\cdot10}\)
\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(A=\frac{2}{5}\cdot\frac{1}{2}=\frac{1}{5}\)
b)\(B=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}=1-\frac{1}{17}=\frac{16}{17}\)
\(A=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{95.99}\)
\(A=\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{5}+...+\frac{1}{95}-\frac{1}{99}\right)\)
\(A=\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{99}\right)\)
\(A=\frac{1}{4}.\frac{98}{99}\)
\(A=\frac{49}{198}\)
Giờ ta so sánh :
\(A=\frac{49}{198}\) và B=1
Ta thấy :
\(\frac{49}{198}<1\)
=> A < B
Vậy A < B