K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2021

Ta có:

\(S=b^2-\left(a-c\right)^2\)

\(\Leftrightarrow\dfrac{1}{2}ac\sin B=a^2+c^2-2ac\cos B-a^2-c^2+2ac\)

\(\Leftrightarrow\dfrac{1}{2}ac\sin B=2ac\left(1-c\text{os}B\right)\)

\(\Leftrightarrow\sin B=4\left(1-c\text{os}B\right)\Leftrightarrow c\text{os}B=1-\dfrac{1}{4}sinB\left(1\right)\)

Mặt \(\ne:sin^2B+c\text{os}^2B=1\)

\(\Leftrightarrow sin^2B+\left(1-\dfrac{1}{4}sinB\right)^2=1\)

\(\Leftrightarrow\dfrac{17}{16}sin^2B-\dfrac{1}{2}sinB=0\)

\(\Leftrightarrow sinB=\dfrac{8}{17}\left(sinB>0\right)\)

Kết hợp với (1) ta đc: \(c\text{os}B=\dfrac{15}{17}\Rightarrow tanB=\dfrac{8}{15}\)

18 tháng 1 2021

Hình như câu b chưa rõ lắm, tam giác ABC cân tại đâu?

18 tháng 1 2021

đề chỉ ghi tam giác cân thôi bạn

a = 60cm

p = 160/2 = 80cm

p = \(\dfrac{a+b+c}{2}\) (1) => \(\dfrac{2p-a}{2}\) = \(\dfrac{b+c}{2}\)

Vì a, p là 1 hằng số nên để S đạt GTLN <=> (p-b) và (p-c) đạt GTLN

Áp dụng bđt Cosin, ta có:

\(\sqrt{\left(p-b\right)\left(p-c\right)}\) <= \(\dfrac{p-b+p-c}{2}\) = \(\dfrac{2p-b-c}{2}\)

=> \(\dfrac{S}{\sqrt{p\left(p-a\right)}}\) <= \(p-\dfrac{b+c}{2}\) = \(p-\dfrac{2p-a}{2}\) = \(\dfrac{a}{2}\)

=> 2S <= \(a\sqrt{p\left(p-a\right)}\) = \(60\sqrt{80.\left(80-60\right)}\) = 2400

=> S <= 1200 (\(cm^2\))

Dấu "=" xảy ra

<=> \(p-b\) = \(p-c\)

<=> b = c

Thay b = c vào (1), ta được:

p = \(\dfrac{a+2b}{2}\) => 80 = \(\dfrac{60+2b}{2}\) => b = c = 50 (cm)

=> đpcm

9 tháng 11 2022

.S=

13 tháng 5 2019

Mình không biết vẽ hình khi trả lời nên bạn tự vẽ nhé

Đầu tiên chứng minh \(NE=\frac{1}{6}AN\)

Qua E kẻ đường thẳng song song BF cắt AC tại K

Theo ta-lét ta có:

\(\frac{FK}{FC}=\frac{BE}{BC}=\frac{1}{3}\)=>\(\frac{FK}{ÀF}=\frac{1}{6}=\frac{NE}{AN}\)

Từ E,N,C kẻ các đường cao tới AB lần lượt là H,G,I

Theo talet ta có

\(\frac{EH}{CI}=\frac{BE}{BC}=\frac{1}{3},\frac{NG}{EH}=\frac{AN}{AE}=\frac{6}{7}\)

=> \(\frac{NG}{CI}=\frac{2}{7}\)=> \(\frac{NG.AB}{CI.AB}=\frac{2}{7}\)

=> \(\frac{S_{ABN}}{S_{ABC}}=\frac{2}{7}\)

Tương tự \(\frac{S_{BPC}}{S_{ABC}}=\frac{2}{7}\),\(\frac{S_{AMC}}{S_{ABC}}=\frac{2}{7}\)

=> \(S_{MNP}=S_{ABC}-S_{AMC}-S_{ABN}-S_{BCP}=\frac{1}{7}S_{ABC}\)

Vậy \(S_{MNP}=\frac{1}{7}S_{ABC}\)

26 tháng 2 2018

A B C M N P

a) Ta có \(\frac{S_{AMP}}{S_{ABC}}=\frac{S_{AMP}}{S_{ABP}}.\frac{S_{ABP}}{S_{ABC}}=\frac{AM}{AB}.\frac{AP}{AC}=\frac{k}{k+1}.\frac{1}{k+1}=\frac{k}{\left(k+1\right)^2}\)

b) Hoàn toàn tương tự như câu a, ta có:

\(\frac{S_{MNB}}{S_{ABC}}=\frac{S_{NCP}}{S_{ABC}}=\frac{k}{\left(k+1\right)^2}\)

\(\Rightarrow S_{MNP}=S_{ABC}-S_{MAP}-S_{MBN}-S_{PNC}\)

\(=S-\frac{3k}{\left(k+1\right)^2}.S=\frac{k^2-k+1}{\left(k+1\right)^2}.S\)

c) Để \(S'=\frac{7}{16}S\Rightarrow\frac{k^2-k+1}{\left(k+1\right)^2}=\frac{7}{16}\)

\(\Rightarrow16k^2-16k+16=7k^2+14k+7\)

\(\Rightarrow9k^2-30k+9=0\Rightarrow\orbr{\begin{cases}k=3\\k=\frac{1}{3}\end{cases}}\)

5 tháng 11 2016

a ) Khi \(a=b=c\)

\(\Rightarrow S=\frac{1}{4}\sqrt{\left(3a^2\right)^2-6a^4}=\frac{1}{4}\sqrt{3a^4}\)

\(\Rightarrow S=\frac{a^2\sqrt{3}}{4}\)

Vậy diện tích tam giác đều cạnh a là \(S=\frac{a^2\sqrt{3}}{4}.\)

b ) Khi \(a^2=b^2+c^2\)

\(\Rightarrow S=\frac{1}{4}\sqrt{\left(2a^2\right)^2-2\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow S=\frac{1}{4}\sqrt{2\left(a^4-b^4-c^4\right)}\)

Từ \(b^2+c^2=a^2\)

\(\Rightarrow b^4+c^4+2b^2c^2=a^4,\)ta tính ra :

\(S=\frac{1}{4}\sqrt{4b^2c^2}\) \(\Rightarrow S=\frac{2}{4}b.c\) \(\Rightarrow S=\frac{1}{2}bc\)

Vậy diện tích tam giác vuông thì bằng \(\frac{1}{2}\) tích 2 cạnh góc vuông .