Các bạn ơi giúp mình với,cần gấp
cho a,b,c là 3 cạnh của 1 tam giác vuông .c là canh huyền.
chứng minh: a^2n+b^2n=c^2n ,nlaf sô tự nhiên lơn hơn0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng PTG ta có: \(c^2=a^2+b^2\) với \(n=1\)
Giả sử đúng với \(n=k\)
\(\Rightarrow A_k=a^{2k}+b^{2k}\le c^{2k}\)
Cần cm nó cũng đúng với \(n=k+1\)
\(\Rightarrow A_{k+1}=a^{2k+2}+b^{2k+2}=c^{2k+2}\\ \Rightarrow\left(a^{2k}+b^{2k}\right)\left(a^2+b^2\right)-a^2b^{2k}-a^{2k}b^2\le c^{2k}\cdot c^2=c^{2k+2}\)
Vậy BĐT đúng với \(n=k+1\)
\(\RightarrowĐpcm\)
Áp dụng định lý PITAGO :
Ta có : \(c^2=a^2+b^2\)
Nhân cả 2 vế với n thì ta có :
\(\Rightarrow\)\(a^{2n}+b^{2n}=c^{2n}\)
Vậy \(a^{2n}+b^{2n}=c^{2n}\left(ĐPCM\right)\)
+) Với n = 1 thì \(a^2+b^2=c^2\)(đúng với định lý Pythagoras)
+) Với n = 2 thì \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=c^4-2a^2b^2< c^4\)(đúng với n = 2)
Giả sử \(a^{2n}+b^{2n}\le c^{2n}\)
Ta sẽ chứng minh điều đó đúng với n + 1.
Ta có: \(a^{2n+2}+b^{2n+2}=\left(a^{2n}+b^{2n}\right)\left(a^2+b^2\right)-a^2.b^{2n}-a^{2n}.b^2\)
\(\le c^{2n}.c^2-a^2.b^{2n}-a^{2n}.b^2=c^{2n+2}-a^2.b^{2n}-a^{2n}.b^2< c^{2n+2}\)
Vậy BĐT đúng với n + 1
Vậy bđt đúng với mọi n > 0
Vậy \(a^{2n}+b^{2n}\le c^{2n}\)(đpcm)