So sánh: C=2011/2012+2012/2013+2013/2011 với 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(B=\frac{2011}{2012}+\frac{2012}{2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}<\frac{2011}{2012}+\frac{2012}{2013}=A\)
Vậy B<A
\(A=\left(1-\frac{1}{2011}\right)-\left(1-\frac{1}{2012}\right)+\left(1-\frac{1}{2013}\right)-\left(1-\frac{1}{2014}\right)\)
\(=1-\frac{1}{2011}-1+\frac{1}{2012}+1-\frac{1}{2013}-1+\frac{1}{2014}\)
\(=\left(1-1+1-1\right)-\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}+\frac{1}{2014}\right)\)
còn lại bó tay @@
\(A=\frac{2010}{2011}-\frac{2011}{2012}+\frac{2012}{2013}-\frac{2013}{2014}\)
và
\(B=\frac{1}{2010.2011}-\frac{1}{2012.2013}\)
Q=2010+2011+2012/2011+2012+2013
Q=2010/2011+2012+2013 + 2011/2011+2012+2013 + 2012/2011+2012+2013
TA CÓl: 2010/2011>2010/2011+2012+2013
2011/2012>2011/2011+2012+2013
2012/2013>2012/2011+2012+2013
=> P>Q
a) 2011/2012= 1- 1/2012
2012/2013=1-1/2013 Mà 1/2012>1/2013 nên
Hiệu1- 1/2012<1-1/2013 (ST lớn thì Hiệu nhỏ)
Vậy 2011/2012<2012/2013
b)13/27= 1-14/27
27/41= 1- 14/41. Mà 14/27>14/41
=> 1-14/27<1- 14/41
Hay 13/27<27/41
a) 2011/2012= 1- 1/2012 2012/2013=1-1/2013 Mà 1/2012>1/2013 nên Hiệu1- 1/2012<1-1/2013 (ST lớn thì Hiệu nhỏ) Vậy 2011/2012<2012/2013 b)13/27= 1-14/27 27/41= 1- 14/41. Mà 14/27>14/41 => 1-14/27<1- 14/41 Hay 13/27<27/41
\(\frac{2010+2011+2012}{2011+2012+2013}=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
Vì \(\frac{2010}{2011+2012+2013}<\frac{2010}{2011};\frac{2011}{2011+2012+2013}<\frac{2011}{2012};\frac{2012}{2011+2012+2013}<\frac{2012}{2013}\)
nên phép dưới nhỏ hơn phép trên
Ta có : \(\frac{2011}{2012}=1-\frac{1}{2012}\)
\(\frac{2012}{2013}=1-\frac{1}{2013}\)
\(\frac{2013}{2011}=1+\frac{2}{2011}\)
Ta có : \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}=\left(1-\frac{1}{2012}\right)+\left(1-\frac{1}{2013}\right)+\left(1+\frac{2}{2011}\right)\)
= \(\left(1+1+1\right)+\left(\frac{2}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)\)
= \(3+\frac{2}{2011}-\left(\frac{1}{2012}+\frac{1}{2013}\right)\)
Ta có :
\(\frac{1}{2012}+\frac{1}{2013}< \frac{1}{2012}+\frac{1}{2012}=\frac{2}{2012}\)
mà : \(\frac{2}{2012}< \frac{2}{2011}=>\frac{1}{2012}+\frac{1}{2013}< \frac{2}{2011}\)
=> \(\frac{2}{2011}-\left(\frac{1}{2012}+\frac{1}{2013}\right)>0\)
Vậy : \(3+\frac{2}{2011}-\left(\frac{1}{2012}+\frac{1}{2013}\right)>3\)
Vậy : \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}>3\)
ủng hộ mik nhá các bạn ơiii ^_^"
Ta có :
B = \(\dfrac{2011}{2012}\) + \(\dfrac{2012}{2013}\) .
\(\dfrac{2011}{2012}\) > \(\dfrac{2011}{2012+2013}\) .
\(\dfrac{2012}{2013}\) > \(\dfrac{2012}{2012+2013}\) .
\(\Rightarrow\) A < B .
2011/2012+2012/2013+2013/2011
=2011/2012+2012/2013+1+2/2011
(1/2011+2011/2012)+(2012/2013+1/2012)+1
Vì 1/2011<1/2012 nên 1/2011+2011/2012<1
Vì 1/2011<1/2013 nên 1/2011+2012/2013<1
Suy ra C>1+1+1=3
Vậy C>3