Cho ABC có AB = AC. Gọi M là trung điểm của BC.
a) Chứng minh: ∆ABM = ∆ACM và AM BC
b) Qua điểm C vẽ đường thẳng vuông góc với AC, đường thẳng này cắt tia AM tại H.
Chứng minh: ∆HBM = ∆HCM và HM là tia phân giác của BHC
c) Chứng minh: ∆ABH = ∆ACH và AB HB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác abm và tam giác amc có:
am chung
bm = mc(gt)
ab=ac(gt)
=> tam giác abm = tam giác amc (c.c.c)
vì 2 tam giác chứng minh trên:
suy ra góc amb = góc amc (cặp góc tương ứng)
ta có amb + amc =180( kề bù)
mà amb = amc(cmt)
=> amb =90 độ
=> am vuông góc mb
=> am vuông góc bc
b, xét tam giác hbm và tam giác hcm có:
bm =mc(gt)
bmh=cmh( vì 2 góc cm ở trên)
hm chung
=> 2 tam giác cần cm bằng nhau
vì tam giác hbm = tam giác hcm(cmt)
=> góc bhm = góc chm( cặp góc tương ứng)
=> hm là tia p/g của góc bhc
c,vì tam giác hbm = tam giác hcm(cmt)
=> hb=hc( cặp cạnh tương ứng)
xét tam giác abh và tam giác ach có:
ab =ac(gt)
ah chung
bh=hc(cmt)
=> tam giác abh = tam giác ach
còn cái ab vuông góc hb thì mình ko nhìn đc bạn nhé
chúc bạn học tốt
hình đây bạn nhé, nếu câu c phần cuối bạn đánh sai thì báo mình để mình làm nốt
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
b: Xét ΔMAB vuông tại M và ΔMDC vuông tại M có
MB=MC
\(\widehat{MBA}=\widehat{MCD}\)(hai góc so le trong, AB//CD)
Do đó: ΔMAB=ΔMDC
Ta có: \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
\(\widehat{ABC}=\widehat{DCB}\)(hai góc so le trong, AB//CD)
Do đó: \(\widehat{ACB}=\widehat{DCB}\)
=>CB là phân giác của góc ACD
a: XétΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó:ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC
c: Xét ΔMCE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔMCE cân tại C
mà CA là đường cao
nên CA là tia phân giác của góc MCE
*Tự vẽ hình
a) Xét tam giác ABM và ACM, có :
AB=AC(GT)
AM-cạnh chung
BM=MC(GT)
-> Tam giác ABM=ACM(c.c.c)
b) Do tam giác ABM=ACM (cmt)
-> \(\widehat{AMB}=\widehat{AMC}=90^o\)
-> AM vuông góc BC
c) Xét tam giác AEI và MBI, có :
\(\widehat{EAI}=\widehat{BMI}=90^o\)
\(\widehat{AIE}=\widehat{BIM}\left(đđ\right)\)
AI=IM(GT)
-> tam giác AEI=MBI(g.c.g)
-> AE=BM ( đccm)
d) Chịu. Tự làm nhe -_-'
#Hoctot
bạn tự vẽ hình
a, xét tam giác ABM và tam giác ACM có :
AB=AC (gt)
MB=MC (gt)
AM là cạch chung
suy ra tam giác ABM =tam giác ACN (c.c.c)
b, Vì tam giác ABM = tam giác ACN (câu a)
suy ra góc M1= góc M2 (2 góc tương ứng)
mà M1+M2=180 ( 2 góc kề bù)
suy ra : M1=M2= 90
suy ra AM vuông góc BC
c, Vì tam giác ABM = tam giác ACM (câu a)
suy ra : A1=A2 ( 2 góc tương ứng)
suy ra: AM là phân giác góc BAC
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔAHB=ΔAHC
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
lỗi rồi
Lỗi