Cho P(x)=ax2+bx+c. Biết 5a+2b+2c=0, chứng minh rằng:P(-1)*P(2)< hoặc =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\left(2\right)=4a+2b+c=2\left(5a+b+2c\right)-6a-3c=-6a-3c\)
\(P\left(-1\right)=a-b+c=-\left(5a+b+2c\right)+6a+3c\)
\(\Rightarrow P\left(2\right).P\left(-1\right)=\left(-6a-3c\right)\left(6a+3c\right)=-\left(6a+3c\right)^2\le0\) (đpcm)
Bn viết nhầm đề bài rồi.
Ta có : P (x) =ax2 + bx +c
\(\Rightarrow\)P(-1) = a - b + c
\(\Rightarrow\)P(2) = 4a+2b + c
\(\Rightarrow\)P(-1) + P(2) = 5a + b +2c = 0
\(\Rightarrow\)P(-1) = - P(2)
\(\Rightarrow\)P(-1)\(\times\)P(2) \(\le\)0
P(1)=a+b+c
P(-2)=4a-2b+c
P(1)+P(2)=5a-3b+2c=0 => P(1) và P(2) trái dấu hoặc P(1)=P(2)=0
=>p(1).P(2) bé hơn hoặc bằng không
Ta có: P(x)=ax2 + bx + c.
=> P(1)= a.12+b.1+c=a+b+c.
P(-2)=a.(-2)2+b.(-1)+c=4a-2b+c.
Ta lại có: P(1)+P(-2)= (a+b+c)+(4a-2b+c)=5a-b+2c=0.
=> P(1)= -P(-2).
=> P(1).P(-2)= -P(-2).P(-2)= - [ P(-2)]2 <_ 0.
Vậy: P(1).P(-2)<_ 0
Cũng có thể sai =)
Có :
\(P\left(-1\right)=a-b+c\le\)\(P\left(1\right)=a+b+c\le P\left(2\right)=4a+2b+c\)
\(P\left(1\right)+P\left(2\right)=5a+2b+2c=0\)
\(\Rightarrow P\left(2\right)=-P\left(1\right)\)
\(\Rightarrow P\left(2\right).P\left(1\right)\le0\)
Mà \(P\left(-1\right)\le P\left(1\right)\)
\(\Rightarrow P\left(-1\right).P\left(2\right)\le0\)