cho hình thoi ABCD có góc DAB bằng 120 độ. Qua B kẻ một đường thẳng cắt DA và DC kéo dài tại E và F sao cho BE<BF. Gọi O là giao điểm AF và CE. Trung tuyến DM của tam giác DEF cắt BC tại K. Chứng minh: AE=CK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Dễ thấy \(\Delta\)BEC và \(\Delta\)DCF đồng dạng ( g.g ) nên \(\frac{BE}{DC}=\frac{EC}{CF}=\frac{BC}{DF}\)
\(\Rightarrow\)BE.DF=BC.DC=BC2 không đổi
b
Ta có:^ABD=\(\frac{1}{2}\)^ABC=\(\frac{1}{2}\)1200=600 \(\Rightarrow\)^EBD=1800-600=1200
Tương tự:^BDF=1200
Ta có:\(\frac{EB}{BC}=\frac{CD}{DF}\Rightarrow\frac{BE}{BD}=\frac{BD}{DF}\) ( để ý góc A bằng 600 và ABCD là hình thoy )
Khi đó \(\Delta\)EBD và \(\Delta\)BDF đồng dạng ( c.g.c ) \(\Rightarrow\)^DBF=^BED
Mà ^BED+^BDI=1200 nên ^DBI+^BDI=1200 hay ^BID=1200
c
Để nghĩ sau
Cảm ơn bạn nhiều nha, bạn giỏi quá. Đây là lần thứ 2 mình đăng câu hỏi, mình cần rất gấp mà lần đầu không ai giúp mình :(((
a. AE = AF:
Δ ABE = Δ ADF vì:
AB = AD ( cạnh hình vuông)
\(\widehat{DAF}=\widehat{BAE}\)( cùng phụ với DAE^)
=> AE = AF
b. Tứ gaíc EGFK là hình thoi
EG // AB và AB // FK => EG // FK (*)
=> \(\widehat{GEF}=\widehat{KFE}\)(1) ( so le trong)
cm câu a) có AF = AE => trung tuyến AI củng là đường trung trực của EF => AI \(\perp\)EF
theo giả thiết: IE = IF (2)
(1) và (2) => Δ IKF = Δ IGE => FK = EG (**)
(*) và (**) => EGFK là hình bình hành
vì AI là trung trực của EF => EG = FG
vậy hình bình hành EGFK là hình thoi.
c. tam giác FIK đồng dạng tam giác FCE
Δ FIK ~ Δ FEC vì:
\(\widehat{F}\)chung
\(\widehat{KIF}=\widehat{ECF}\) = 1v
d. EK = BE + DK và khi E chuyển động trên BC thì chu vi tam giác ECK không đổi
gọi cạnh hình vuông là a, ta có:
CV = EC + CK + EK = (BC - BE) + (CD - DK) + (BE + DK) = BC + CD = 2a không đổi