Giải bài toán bằng cách lập phương trình: Một ô tô đi từ A đến B . Cùng một lúc ô tô thứ hai đi từ B đến A với vận tốc bằng 2/3 vận tốc của ô tô thứ nhất . Sau 5 giờ chúng gặp nhau. Hỏi mỗi ô tô đi cả quãng đường AB thì mất bao lâu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
gọi vận tốc của ô tô thứ nhất là a
=> vận tốc ô tô thứ hai là 2/3 a
=> quãng đường S là S= 5a+5.2/3 a=25/3 a
thời gian ô tô thứ nhất đi hết quãng đường là 25/3 a:a=25/3 h
thời gian ô tô thứ hai đi hết quãng đường là 25/3 a :2/3 a= 12,5 h
Học tốt
gọi vận tốc của ô tô thứ nhất là a
=> vận tốc ô tô thứ hai là 2/3 a
=> quãng đường S là S= 5a+5.2/3 a=25/3 a
thời gian ô tô thứ nhất đi hết quãng đường là 25/3 a:a=25/3 h
thời gian ô tô thứ hai đi hết quãng đường là 25/3 a :2/3 a= 12,5 h
Gọi vận tốc xe thứ nhất là a(km/h) (a>0)
=>Vận tốc xe thứ 2 là 2a/3 (km/h);
Sau 5h hai xe gặp nhau vậy:
=> Quãng đường AB= 5(a+2a/3)=5*5a/3=25a/3(km)
Thời gian xe thứ nhất đi hết quãng đường AB: (25a/3)/a=25/3(h) đổi ra là 8h20p
Thời gian xe thứ nhất đi hết quãng đường AB: (25a/3)/(2a/3)=25/2(h) đổi ra là 12h30p
Gọi vận tốc ô tô 2 là x
=>Vận tốc ô tô 1 là x+10
Theo đề, ta có: 6x=5(x+10)
=>6x=5x+50
=>x=50
=>Vận tốc ô tô 1 là 60km/h
Gọi vận tốc ôtô thứ nhất là x km/h (x>0)
=> Vận tốc ôtô thứ hai sẽ là: \(\frac{2x}{3}\) km/h
Vì hai xe đi ngược chiều và cùng thời gian nên trong 1 giờ hai xe đã đi được quãng đường dài:
x + \(\frac{2x}{3}\) = \(\frac{5x}{5}\) km
=>Tổng chiều dài quãng đường AB:
\(\frac{5x}{3}\) * 5 = \(\frac{25x}{3}\) km
=> Thời gian xe thứ nhất đi hết quãng đường AB:
\(\frac{25x}{3}\) : x = \(\frac{25}{3}\) h = 8 h 30 phút
=> Thời gian xe thứ hai đi hết quãng đường AB