2 tổ công nhân nếu làm chung thì 12h hoàn thành 1 công việc. Họ làm chung với nhau 4h,tổ 1 nghỉ, tổ 2 làm công việc còn lại trong 10h. Tính thời gian mỗi tổ làm 1 mình xong công việc?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu 2 tồ cùng làm 4 giờ thì phần còn lại hai tổ làm trong 8 giờ, còn riêng tổ 2 làm phần còn lại thì xong trong 10 giờ.
Vậy tổ 2 làm xong công việc lâu bàng 10/8 thời gian 2 tổ cùng làm.
Số thời gian tổ 2 làm xong công việc :
12:8x10 = 15 (giờ)
Nếu 2 tổ cùng làm thì trong 1 giờ sẽ làm được 1/12 công việc.
Nếu riêng tổ 2 làm thì trong 1 giờ sẽ làm được 1/15 công việc.
Nếu tổ 1 làm trong 1 giờ sẽ được : 1/12 - 1/15 = 1/60 công việc
Nếu 1 giờ tổ 1 làm được 1/60 công việc thì sẽ làm hết công việc trong 60 giờ
Vậy tổ 1 làm xong trong 60 giờ, tổ 2 làm xong trong 15 giờ.
Gọi thời gian đội 2 làm một mình hoàn thành công việc là x (giờ , x > 12)
=> Trong 1 giờ tổ 2 làm một minh được : 1/x (công việc)
Hai tổ làm chung hoàn thành trong 12 giờ
Trong thực tế 2 tổ làm chung được 4 giờ
=> Hai tổ làm chung được 4/12 = 1/3 (công việc)
=> Tổ 2 làm một mình hết 2/3 công việc trong 10 giờ
=> Trong 1 giờ tổ 2 làm một mình được :
(2/3)/10 = 2/30 = 1/15 (công việc)
Ta có : 1/x = 1/15 <=> x = 15
Vậy tổ 2 làm một mình thì sau bao lâu 15 giờ sẽ hoàn thành công việc
Gọi thời gian tổ 1 làm một mình xong công việc là x(h); thời gian tổ 1 làm một mình xong công việc là y(h) (ĐK: x, y > 0)
Một giờ tổ 1 làm được: \(\dfrac{1}{x}\) (Công việc)
Một giờ tổ 2 làm được: \(\dfrac{1}{y}\) (Công việc)
Một giờ cả hai tổ làm được: \(\dfrac{1}{12}\) (Công việc)
Vì một giờ cả hai tổ làm được \(\dfrac{1}{12}\) công việc nên ta có pt:
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\) (1)
Tổ 1 làm chung với tổ 2 trong 4 giờ thì phải đi làm việc khác nên tổ 1 làm được: \(\dfrac{4}{x}\) (Công việc)
Tổ 2 làm chung với tổ 1 trong 4 giờ và làm xong công việc còn lại trong 10 giờ nên tổ 2 làm được: \(\dfrac{4}{y}+\dfrac{10}{y}=\dfrac{14}{y}\) (Công việc)
Vì hai tổ làm xong 1 công việc nên ta có pt:
\(\dfrac{4}{x}+\dfrac{14}{y}=1\) (2)
Từ (1) và (2) ta có hpt:
(I) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)
Giải hpt:
(I) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{4}{y}=\dfrac{1}{3}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-\dfrac{10}{y}=\dfrac{-2}{3}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=15\\\dfrac{4}{x}+\dfrac{14}{15}=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=15\\\dfrac{4}{x}=\dfrac{1}{15}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=60\\y=15\end{matrix}\right.\) (TM)
Vậy tổ 1 làm một mình trong 60h thì xong công việc đó
tổ 2 làm một mình trong 15h thì xong công việc đó
Chúc bn học tốt!
Gọi thời gian tổ 1 làm một mình xong công việc là x(h); thời gian tổ 1 làm một mình xong công việc là y(h) (ĐK: x, y > 0)
Một giờ tổ 1 làm được: (Công việc)
Một giờ tổ 2 làm được: (Công việc)
Một giờ cả hai tổ làm được: (Công việc)
Vì một giờ cả hai tổ làm được công việc nên ta có pt:
(1)
Tổ 1 làm chung với tổ 2 trong 4 giờ thì phải đi làm việc khác nên tổ 1 làm được: (Công việc)
Tổ 2 làm chung với tổ 1 trong 4 giờ và làm xong công việc còn lại trong 10 giờ nên tổ 2 làm được: (Công việc)
Vì hai tổ làm xong 1 công việc nên ta có pt:
(2)
Từ (1) và (2) ta có hpt:
(I)
Gọi thời gian tổ 1 và 2 làm một mình xong toàn bộ công việc lần lượt là a và b giờ
=> Trong 1 giờ tổ 1 làm được 1/a công việc, tổ 2 làm được 1/b công việc
Ta có: 12.1/a+12.1/b=1
và 2.1/a + 7.1/b=1/2
=> 1/a =1/60 => a =60
1/b=1/15=>b=15
Gọi thời gian tổ 1 hoàn thành công việc 1 mình là :x(h)
thòi gian tổ 2 hoàn thành công việc 1 mình là : y(h)
Một giờ tổ 1 làm được : \(\frac{1}{x}\)(công việc)
Một giờ tổ 2 làm được :\(\frac{1}{y}\)(công việc)
một giờ cả 2 làm được :\(\frac{1}{12}\)(công việc)
Ta có pt: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\left(1\right)\)
Hai giờ tổ 1 làm được :\(\frac{2}{x}\)
bảy giờ tổ 2 làm được : \(\frac{7}{y}\)
Cả 2 làm được nửa công việc là :\(\frac{1}{2}\)
Ta có pt:\(\frac{2}{x}+\frac{7}{y}=\frac{1}{2}\left(2\right)\)
Từ(1) và (2) ta có hệ pt:\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\\frac{2}{x}+\frac{7}{x}=\frac{1}{2}\end{cases}}\)<=> \(\hept{\begin{cases}\frac{2}{x}+\frac{2}{y}=\frac{1}{6}\\\frac{2}{x}+\frac{7}{y}=\frac{1}{2}\end{cases}}\)<=>\(\hept{\begin{cases}\frac{2}{x}+\frac{2}{y}-\frac{2}{x}-\frac{7}{y}=\frac{1}{6}-\frac{1}{2}\\\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\end{cases}}\)
<=>\(\hept{\begin{cases}\frac{5}{y}=\frac{1}{3}\\\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\end{cases}}\)<=>\(\hept{\begin{cases}y=15\\x=60\end{cases}}\)
Khi tổ 1 đi nơi khác thì nếu 2 tổ cùng làm nữa thì phải mất:
6 - 2 = 4 (giờ)
Lượng công việc 2 tổ cần phải làm nữa là:
4 : 6 = 2/3 (công việc)
Thời gian tổ 2 cần để xong công việc là:
8 : 2/3 = 12 (giờ)
Đáp số: 12 giờ
Gọi thời gian làm riêng hoàn thành công việc 2 tổ công nhân lần lượt là a ; b ( a ; b > 0 )
Theo bài ra ta có hệ \(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\\\dfrac{14}{a}+\dfrac{4}{b}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{15}\\\dfrac{1}{b}=\dfrac{1}{60}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=15\\b=60\end{matrix}\right.\)(tm)
Vậy...