tìm các nghiệm nguyên x,y của phương trình
2x+3y = 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2x2y - 1 = x2 + 3y
<=> 4x2y - 2 - 2x2 - 6y = 0
<=> 2x2(2y - 1) - 3(2y - 1) = 5
<=> (2x2 - 3)(2y - 1) = 5 = 1.5
Lập bảng:
2x2 - 3 | 1 | 5 |
2y - 1 | 5 | 1 |
x | \(\pm\sqrt{2}\)(loại) | 2 |
y | 1 |
Vậy nghiệm (x;y) của phương trình là (2; 1)
\(2x^2y-1=x^2+3y\)
\(\Leftrightarrow4x^2y-2=2x^2+6y\)
\(\Leftrightarrow\left(2y-1\right)\left(2x^2-3\right)=5\)
Đến đây đơn giản rồi :))))
\(y^2=-2\left(x^6-x^3y-32\right)\)
\(\Leftrightarrow2x^6-2x^3y+y^2=64\)
\(\Leftrightarrow4x^6-4x^3y+2y^2=128\)
\(\Leftrightarrow\left(2x^3-y\right)^2+y^2=128\)
Áp dụng bất đẳng thức sau: \(A^2+B^2\ge\dfrac{\left(A+B\right)^2}{2}\), ta có:
\(\left(2x^3-y\right)^2+y^2\ge\dfrac{\left(2x^3-y+y\right)^2}{2}=2x^6\)
\(\Leftrightarrow128\ge2x^6\Leftrightarrow x^6\le64\)
\(\Leftrightarrow-2\le x^2\le2\)
Vậy \(x\in\left\{-2;-1;0;1;2\right\}\)