Cho A là số chính phương gồm 4 cs (chữ số).
Nếu thêm 1 đv vào cs hàng nghìn, thêm 3 đv vào cs hàng trăm, thêm 5 đv vào cs hàng chục, thêm 3 đv vào cs hàng đv, ta vẫn được 1 số chính phương thì A=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số đó là abcd (0<a\(\le9,0\le b,c,d\le9\))
theo bài ra ta có: \(\hept{\begin{cases}abcd=k^2\\\left(a+1\right)\left(b+3\right)\left(c+5\right)\left(d+3\right)=h^2\end{cases}}\left(k,h\varepsilonℕ;31< k,h\le99\right)\)
\(\Rightarrow\hept{\begin{cases}1000a+100b+10c+d=k^2\\1000\left(a+1\right)+100\left(b+3\right)+10\left(c+5\right)+\left(d+3\right)=h^2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}1000a+100b+10c+d=k^2\\1000a+100b+10c+d+1353=h^2\end{cases}}\)
\(\Rightarrow h^2-k^2=1353\)
Ta thấy (h-k)>(h+k) \(\forall h,k\varepsilonℕ^∗\)
\(\Rightarrow\left(h-k\right)\left(h+k\right)=1\cdot1353=3\cdot451=11\cdot123=33\cdot41\)
Xét \(\hept{\begin{cases}h-k=1\\h+k=1353\end{cases}}\Leftrightarrow\hept{\begin{cases}h=677\\k=676\end{cases}\left(loai\right)}\)
xét \(\hept{\begin{cases}h-k=3\\h+k=451\end{cases}}\Leftrightarrow\hept{\begin{cases}h=227\\k=224\end{cases}}\left(loai\right)\)
Xét \(\hept{\begin{cases}h-k=11\\h+k=123\end{cases}}\Leftrightarrow\hept{\begin{cases}h=67\\k=56\end{cases}}\left(nhan\right)\)
Xét \(\hept{\begin{cases}h-k=33\\h+k=41\end{cases}}\Leftrightarrow\hept{\begin{cases}h=37\\k=4\end{cases}}\left(loai\right)\)
Vậy k=56=>abcd=\(k^2=3136\)
Gọi số cần tìm là \(\overline{abc}\)
Vì b:c=2( dư 2)
\(\Rightarrow\)c >2
Với c=3
b=3.2+2=8
a=3.2+1=7
\(\Rightarrow\)\(\overline{abc}\)= 783
Với c\(\ge\)4
b=2c+2 \(\ge\)10 (loại)(vì b là chữ số)
Vậy số cần tìm là 783
Gọi số cần tìm là abcd . Xóa chữ số hàng chục và hàng đơn vị , ta được số ab
Theo đề bài , ta có :
abcd - ab = 4455
100 x ab + cd - ab = 4455
cd + 100 x ab - ab = 4455
cd + 99 x ab = 4455
cd = 99 x ( 45 - ab )
Ta nhận xét tích của 99 với 1 số tự nhiên là 1 số tự nhiên nhỏ hơn 100 . Cho nên 45 - ab phải bằng 0 hoặc bằng 1
Nếu 45 - ab = 0 thì ab = 45 ; cd = 00
Nếu 45 - ab = 1 thì ab = 44 ; cd = 99
Vậy số cần tìm là 4500 hoặc 4499
Khi thêm vào bên phải 1 số có 3 chữ số ta được số mới hơn số ban đầu 10 lần và 6 đơn vị. Coi số ban đầu là 1 Phần thì số mới là 10 phần như thế.hiệu là 1761. số ban đầu là: (1761-6):9*1=195
Giải:
Gọi số cần tìm là \(\overline{ab3}\)
Theo bài ra ta có:
\(\overline{ab3}-\overline{ab}=408\)
\(\Rightarrow10.\overline{ab}+3-\overline{ab}=408\)
\(\Rightarrow10.\overline{ab}-\overline{ab}=408-3\)
\(\Rightarrow9.\overline{ab}=405\)
\(\Rightarrow\overline{ab}=45\)
\(\Rightarrow\overline{ab3}=453\)
Vậy số cần tìm là 453
Nếu bớt cs 3 đó đi ta được số mới kém sô phải tìm 408đv
=> 10a + b + 408 = 100a + 10b + 3
<=> 10a + b - 45 = 0
<=> b = 45 - 10a
Chọn a = 1 => b = 35 (loại)
Chọn a = 2 => b = 25 (loại)
Chọn a = 3 => b = 15 (loại)
Chọn a = 4 => b = 5
Chọn a = 5 => b = -5 (loại)
Do đó, số phải tìm là 453.
Gọi số chính phương cần tìm là abcd
=> đặt abcd = n2
theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương
=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số
ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)
= (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3
= abcd + 1353 (*)
=> m2 = n2 + 1353 => m2 - n2 =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123
TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn
TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn
vậy số cần tìm là 562 = 3136
Gọi số chính phương cần tìm là abcd
=> đặt abcd = n2
theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương
=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số
ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)
= (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3
= abcd + 1353 (*)
=> m2 = n2 + 1353 => m2 - n2 =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123
TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn
TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn
vậy số cần tìm là 562 = 3136
Số cần tìm chỉ có duy nhất 1 số đó là 3136 nha bạn
k đúng cho mk