K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2016

A=(  4^5/4+4^5/4^2+4^5/4^3+4^5/4^4  )+.....................+ (  4^101/4^97+....+4^101/4^100  ) 

A = ( 4^4+ 4^3+4^2+4 ) + .........................................+ ( 4^4 + 4^3+4^2+4)

A= ( 4^4 + 4^ 3+ 4^2+4 ) * ( (101-5):4+1)

A = (4^4+4^3+4^2+4) * 25

A =( 256+81+16+4)*25= 8925

        k cho mình nhé 

...
Đọc tiếp

\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)

\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)

\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)

\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)

\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)

\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)

\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)

\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)

\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)

\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)

\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)

\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)

\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)

\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)

\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)

\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)

\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)

\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)

TRÌNH BÀY GIÚP MÌNH NHA 

0
...
Đọc tiếp

\(3\frac{1}{2}-4\frac{2}{3}+\left[\frac{3}{4}-2\frac{1}{3}\right]-\left(\frac{5}{6}-\frac{7}{4}\right)+5\frac{1}{2}-3\)

\(2\frac{2}{3}-1\frac{2}{5}+1\frac{3}{10}-\left(\frac{2}{5}-\frac{5}{6}\right)+\frac{4}{15}-1\frac{1}{3}\)

\(\left[2\frac{1}{3}-1\frac{4}{3}\right]-\left(\frac{5}{4}-\frac{7}{12}+\frac{-11}{6}\right)+\frac{4}{3}-\frac{3}{4}\)

\(-3\frac{3}{2}+5\frac{4}{3}-\left(\frac{7}{6}-1\frac{3}{4}\right)+\left[\frac{2}{3}-2\frac{1}{4}\right]\)

\(2\frac{2}{3}-\frac{5}{12}-\left(1\frac{3}{4}-2\frac{1}{4}\right)-\left[1-1\frac{1}{6}\right]+\left[\frac{-5}{3}\right]\)

\(1\frac{1}{3}-5\frac{1}{2}-\left[\frac{5}{6}-2\frac{2}{3}\right]+\left[\frac{7}{12}-\frac{5}{6}\right]\)

\(\frac{8}{15}-\left(\frac{2}{5}-3\frac{1}{3}+\left[\frac{-5}{6}\right]\right)+\left[\frac{1}{2}-\frac{4}{5}\right]-\left(\frac{1}{6}-1\frac{1}{3}\right)\)

\(-2\frac{3}{2}+\left[\frac{5}{6}-1\frac{1}{3}\right]-\left(\frac{5}{12}-\frac{7}{6}\right)+\left[\frac{4}{3}-3\frac{1}{4}\right]\)

\(\frac{9}{10}-1\frac{2}{5}-\left(\frac{5}{6}-3\frac{1}{2}\right)-\left[2\frac{1}{4}-5\frac{2}{36}\right]-\left[1-2\frac{1}{15}\right]\)

\(\frac{5}{7}-\frac{5}{21}+1\frac{2}{3}-\left(1\frac{1}{2}-\frac{5}{14}-\frac{1}{3}\right)+\left[\frac{1}{6}-\frac{4}{3}\right]\)

\(\frac{5}{7}-\frac{5}{21}+1\frac{2}{3}-\left(1\frac{1}{2}-\frac{5}{14}-\frac{1}{3}\right)+\left[\frac{1}{6}-\frac{4}{3}\right]\)

\(1\frac{1}{5}-\left(\frac{-9}{10}-2\frac{1}{2}+\frac{3}{4}\right)+\left[\frac{1}{5}-2\frac{1}{2}\right]+\frac{7}{10}-\left(\frac{1}{2}-\frac{1}{4}\right)\)

\(2\frac{1}{3}-\left(5\frac{1}{2}-2\frac{2}{3}\right)+\left[1\frac{1}{6}-2\frac{1}{2}\right]-\frac{5}{12}+\left(\frac{1}{4}-\frac{1}{8}\right)\)

 

 

 

 

 

 

 

 

2
19 tháng 6 2018
  1. ​29/15
  2. 23
  3. 23/12
  4. 5/6
  5. 5/4
  6. -31/12
  7. 31/6
  8. -13/3
  9. 1087/180
  10. 1/6
  11. 1/6
  12. 2
  13. -67/24
11 tháng 4 2022
Ôi mẹ ơi dài khiếp
16 tháng 7 2018

\(a,A=\left[\frac{4}{11}.\left(\frac{1}{25}\right)^0+\frac{7}{22}.2\right]^{2010}-\left(\frac{1}{2^2}:\frac{8^2}{4^4}\right)^{2009}\)

\(A=\left(\frac{4}{11}.1+\frac{7}{11}\right)^{2010}-\left(\frac{1}{2^2}.2^2\right)^{2009}\)

\(A=1-1=0\)

\(b,B=\frac{0,8:\left(\frac{4}{5}.1,25\right)}{0,64-\frac{1}{25}}+\frac{\left(1,08-\frac{2}{25}\right):\frac{4}{7}}{\left(6\frac{5}{9}-3\frac{1}{4}\right).2\frac{2}{17}}+\left(1,2.0,5\right):\frac{4}{5}\)

\(B=\frac{0,8:1}{\frac{3}{5}}+\frac{\left(1\right):\frac{4}{7}}{\left(\frac{59}{9}-\frac{13}{4}\right).36}\)

\(B=0,8.\frac{5}{3}+\frac{\frac{7}{4}}{\frac{119}{36}.36}\)

\(B=\frac{4}{3}+\frac{7}{4}.\frac{1}{119}\)

\(B=\frac{4}{3}+\frac{1}{68}=\frac{275}{204}\)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

\(\begin{array}{l}a)\left( {\frac{2}{3} + \frac{1}{6}} \right):\frac{5}{4} + \left( {\frac{1}{4} + \frac{3}{8}} \right):\frac{5}{2}\\ = \left( {\frac{4}{6} + \frac{1}{6}} \right).\frac{4}{5} + \left( {\frac{2}{8} + \frac{3}{8}} \right).\frac{2}{5}\\ = \frac{5}{6}.\frac{4}{5} + \frac{5}{8}.\frac{2}{5}\\ = \frac{2}{3} + \frac{1}{4}\\ = \frac{8}{{12}} + \frac{3}{{12}}\\ = \frac{{11}}{{12}}\\b)\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\\ = \frac{5}{9}:\left( {\frac{2}{{22}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{4}{{14}}} \right)\\ = \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{7}{4}.\frac{{ - 3}}{{14}}\\ = \frac{5}{9}.\frac{{ - 22}}{3} + \frac{{ - 3}}{8}\\ = \frac{{ - 110}}{{27}} + \frac{{ - 3}}{8}\\ = \frac{{ - 880}}{{216}} + \frac{{ - 81}}{{216}}\\ = \frac{{ - 961}}{{216}}\end{array}\)

Tính giá trị biểu thức :1. \(A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\) 2. \(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)3. \(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)4. \(D=(\frac {150}{1111}+\frac{5}{75}-\frac{14}{77})(\frac{1}{5}-\frac{1}{6}-\frac{1}{30})...
Đọc tiếp

Tính giá trị biểu thức :

1. \(A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\) 

2. \(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)

3. \(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)

4. \(D=(\frac {150}{1111}+\frac{5}{75}-\frac{14}{77})(\frac{1}{5}-\frac{1}{6}-\frac{1}{30}) \)

5. Cho \(M=8\frac{2}{7}-\left(3\frac{4}{9}+3\frac{9}{7}\right);N=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\). Tính \(P=M-N\)

6. \(E=10101\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)

7. \(F=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{64}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

8. \(G=\left[\frac{\left(6-4\frac{1}{2}\right):0,03}{\left(3\frac{1}{20}-2,65\right).4+\frac{2}{5}}-\frac{\left(0,3-\frac{3}{20}\right).1\frac{1}{2}}{\left(1,88+2\frac{3}{25}\right).\frac{1}{80}}\right]:\frac{49}{60}\)

9. \(H=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{4.5.6}+...+\frac{1}{98.99.100}\)

10. \(I=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.....\frac{2499}{2500}\)

11. \(k=\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{999}\right)\)

12. \(L=1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}...\)(98 thừa số)

13. \(M=-2+\frac{1}{-2+\frac{1}{-2+\frac{1}{-2+\frac{1}{3}}}}\)

14. \(N=\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{26}{7}-\frac{13}{11}+\frac{13}{23}}\)

15. \(P=\left(\frac{1}{4}-1\right)\left(\frac{1}{5}-1\right)...\left(\frac{1}{2000}-1\right)\left(\frac{1}{2001}-1\right)\)

16. \(Q=\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\right):\left(\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\right)\)

3
2 tháng 5 2018

\(1)A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\)

\(=\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}\)

\(=\frac{2}{4}=\frac{1}{2}\)

\(2)B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)

\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}.\frac{4.4}{4.5}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)

\(=\frac{1.2.3.4}{2.3.4.5}=\frac{1}{5}\)

\(3)C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)

\(=\frac{2.2.3.3.4.4.5.5}{1.3.2.4.3.5.4.6}\)

\(=\frac{2.5}{1.6}=\frac{2.5}{1.3.2}=\frac{5}{3}\)

\(4)D=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{1}{5}-\frac{1}{6}-\frac{1}{30}\right)\)

\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{6}{30}-\frac{5}{30}-\frac{1}{30}\right)\)

\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right).0=0\)

\(5)M=8\frac{2}{7}-\left(3\frac{4}{9}+3\frac{9}{7}\right)\)               \(N=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\)

\(=\frac{58}{7}-\left(\frac{31}{9}+\frac{30}{7}\right)\)                         \(=\left(\frac{92}{9}+\frac{13}{5}\right)-\frac{56}{9}\)

\(=\frac{58}{7}-\left(\frac{217}{63}+\frac{270}{63}\right)\)                     \(=\left(\frac{460}{45}+\frac{117}{45}\right)-\frac{280}{45}\)

\(=\frac{58}{7}-\frac{487}{63}\)                                          \(=\frac{577}{45}-\frac{280}{45}\)

\(=\frac{522}{63}-\frac{487}{63}=\frac{5}{9}\)                             \(=\frac{33}{5}\)

\(P=M-N\)

\(\Rightarrow P=\frac{5}{9}-\frac{33}{5}\)

\(\Rightarrow P=\frac{25}{45}-\frac{297}{45}\)

\(\Rightarrow P=\frac{-272}{45}\)

Vậy P = \(\frac{-272}{45}\)

\(6)E=10101\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)

\(=\frac{5}{11}+\frac{5}{22}-\left(10101.\frac{4}{111111}\right)\)

\(=\frac{10}{22}+\frac{5}{22}-\frac{4}{11}\)

\(=\frac{15}{22}-\frac{8}{22}=\frac{7}{22}\)

\(7)F=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{64}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

\(=\frac{1\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}{2\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}.\frac{3\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{64}\right)}{1\left(1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}\right)}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{16}{64}-\frac{4}{64}+\frac{1}{64}-\frac{1}{256}\right)}{1\left(\frac{64}{64}-\frac{16}{64}+\frac{4}{64}-\frac{1}{64}\right)}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{13}{64}-\frac{1}{256}\right)}{1.\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{52}{256}-\frac{1}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{51}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{\frac{153}{256}}{\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{153}{256}:\frac{51}{64}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3}{4}+\frac{5}{8}\)

\(=\frac{3}{8}+\frac{5}{8}=1\)

Xin lỗi tớ đã làm hết buổi tối mà chỉ có 7 bài mong bạn thông cảm cho mình nhé !

9 tháng 2 2018
sao không tự làm một số bài dễ đi
22 tháng 7 2016

Xét số hạng tổng quát:

\(k^4+\frac{1}{4}=\left(k^4+2\cdot\frac{1}{2}\cdot k^2+\frac{1}{4}\right)-k^2\)=\(\left(k^2+\frac{1}{2}\right)^2-k^2\)

\(\left(k^2+\frac{1}{2}-k\right)\left(k^2+\frac{1}{2}+k\right)\)

Thay k từ 1 đến 12 ta được:

A=\(\frac{\frac{1}{2}\cdot\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)...\left(110+\frac{1}{2}\right)\left(132+\frac{1}{2}\right)}{\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)...\left(132+\frac{1}{2}\right)\left(152+\frac{1}{2}\right)}\)=\(\frac{\frac{1}{2}}{152+\frac{1}{2}}=\frac{1}{305}\)

22 tháng 7 2016

Vì cộng thêm k2 trong ngoặc nên phải trừ đi k2