Chứng minh phân số n/n+1 tối giản ; ( n là số tự nhiên & n khác 0 ).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Gọi d = ƯCLN(n+1;n). Nên suy ra:
n+1 chia hết cho d
n chia hết cho d
\(\Rightarrow n+1-n\) chia hết cho d
\(\Rightarrow1\) chia hết cho d
\(\Rightarrow d=1\)
\(\Rightarrow\) ƯCLN(n+1;n)=1
\(\Rightarrow\) Phân số \(A=\frac{n+1}{n}\) là phân số tối giản ( đpcm)
Ta có n + 1 và n là hai số tự nhiên liên tiếp.
Vì n và n + 1 là hai số nguyên tố cùng nhau nên:
n + 1 và n có ƯCLN = 1
Vì ƯCLN là 1 nên không thể rút gọn
=> \(\frac{n+1}{n}\) tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
1Đặt UCLN(\(2n^2\) + n + 1;n) = d
=> \(2n^2\) + n + 1 ⋮ d ; n ⋮ d
=> (2n + 1) n ⋮ d
<=>\(2n^2\) + n ⋮ d
<=>(2n2 + n + 1) - (2n2 + n) ⋮ d
<=> 1⋮d
=> d ϵƯ(1)=1
=>UCLN(\(2n^2\) + n + 1;n) =1
=>dpcm
gọi d thuộc ước chung lớn nhất của n+1 và 2n+1(d thuộc N*)
suy ra n+1 chia hết cho d
2n+1 chia hết cho d
nên 2.(n+1) chia hết cho d
2n+1 chia hết cho d
2n+2 chia hết chod
2n+1 chia hết cho d
(2n+2)-(2n+1) chia hết cho d
nên 1 chia hết cho d
vậy d=1
c/m p/số n+1/2n+1 với n thuộc N* là phân số tối giản
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
chịuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
Gọi d là UCLN(n;n+1)
Suy ra: n chia hết cho d; n+1 chia hết cho d (1)
=> (n+1)-n chia hết cho d
=> 1 chia hết cho d (2)
Từ (1) và (2) => d=+1
Vậy n/n+1 là phân số tối giản
vì n và n+1 là hai số nguyên tố cùng nhau