Cho điểm O là điểm tùy ý trong tam giác ABC. Vẽ OA1,OB1,OC1 lần lượt vuông góc với BC, CA, AB . chứnG minh rằng
AB12+BC12+CA12+BA12+CB12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tam giác ABC có I là trung điểm AB; M là trung điểm BC nên IM là đường trung bình của tam giác ABC
=> IM// AC; IM=1/2 AC hay IM=AK
Tứ giác AIKM có IM//AK; IM=AK nên tứ giác AIKM là hình bình hành.
lại có Góc A bằng 90 độ, vậy AIKM là hình chữ nhật.
b) tam giác MEF có I là trung điểm của ME, K là trung điểm của MF nên IK là đường trung bình của tam giác MEF
=> IK//EF
IK=1/2EF hayEF=2IK.
c) Tam giác ABC có I là trung điểm của AB
K là trung điểm của AC
=> Ik là đường trung bình của tam giác ABC
=> IK//BC=> IK//HM, hay IKMH là hình thang.
Vì AIMK là hình chữ nhật(cmt)
nên AI//KM => góc AIK=MKI(so le trong)
ta có IK//BC(cmt) => Góc AIK=IBC(đồng vị)
từ hai điều này suy ra Góc IBH=MKI.(1)
Tam giác AHB vuông tại H, có HI là trung tuyến
=> IH=IB => Góc IBH=IHB. mà Góc IHB=HIK
=> Góc IBH = HIK(2)
Từ (1) và (2) suy ra Góc HIK=MKI
HÌnh thang IKMH có 2 góc kề đáy HIK=MKI bằng nhau, nên IKMH là hình thang cân.
d) Ta có Góc HIK=MKI(cmt)
mà góc MKI=AIK(so le trong)
nên góc AIK=HIK
Xét tam giác AIK và HIK có
AI=IH(cmt)
AIK=HIK(cmt)
IK cạnh chung
=> hai tam giác bằng nhau theo trương hợp(c.g.c)
=>HK=AK
=> IK=2HK=2AK
mà IK=1/2BC(cmt); AK=1/2AC, nên ta có:
1/2BC=2.1/2AC
=> AC=1/2BC.
Tam giác ABC vuông tại A, có AC=1/2BC nên tam giác ABC là nửa tam giác đều
=> Góc ACB=60độ=> Góc ABC=30 độ
câu này mình không chắc lắm, theo mình nghĩ thì khi cho IK=2HK thì đây là điều kiện mới, không theo cái cũ nữa
chứ nếu theo cũ thì chắc góc ABC k thể bằng 30 đc.
a.
E và F là trung điểm AB và CD nên: \(\overrightarrow{AB}=2\overrightarrow{AE}\) ; \(\overrightarrow{DC}=2\overrightarrow{DF}\)
G là trung điểm EF nên: \(\overrightarrow{AE}+\overrightarrow{AF}=2\overrightarrow{AG}\)
Do đó:
\(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=2\overrightarrow{AE}+\overrightarrow{AD}+\overrightarrow{DC}+\overrightarrow{AD}=2\overrightarrow{AE}+2\overrightarrow{AD}+2\overrightarrow{DF}\)
\(=2\overrightarrow{AE}+2\left(\overrightarrow{AD}+\overrightarrow{DF}\right)=2\overrightarrow{AE}+2\overrightarrow{AF}=2\left(\overrightarrow{AE}+\overrightarrow{AF}\right)=4\overrightarrow{AG}\)
b.
\(\left(\overrightarrow{GA}+\overrightarrow{GB}\right)+\left(\overrightarrow{GC}+\overrightarrow{GD}\right)=2\overrightarrow{GE}+2\overrightarrow{GF}=2\left(\overrightarrow{GE}+\overrightarrow{GF}\right)=2.\overrightarrow{0}=\overrightarrow{0}\)
c.
Từ câu b ta có:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{GO}+\overrightarrow{OA}+\overrightarrow{OG}+\overrightarrow{OB}+\overrightarrow{GO}+\overrightarrow{OC}+\overrightarrow{GO}+\overrightarrow{OD}=\overrightarrow{0}\)
\(\Rightarrow4\overrightarrow{GO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)
\(\Rightarrow4\overrightarrow{OG}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\)
\(\Rightarrow\overrightarrow{OG}=\dfrac{1}{4}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right)\)
a: Xet ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
=>CA là phân giác củagóc BCD
b: Xét ΔCEI vuông tại E và ΔCFI vuông tại F có
CI chung
góc ECI=góc FCI
=>ΔCEI=ΔCFI
=>CE=CF
=>ΔCEF cân tạiC
Xet ΔCDB có CE/CD=CF/CB
nên EF//DB
c: IE=IF
IF<IB
=>IE<IB