Bài 1 : Tính BCNN của \(\frac{16}{21}\) và \(\frac{56}{27}\)( Giải rõ => tick )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(56\times27+56\times35\right)\div62=56\times\left(27+35\right)\div62=56\times62\div62=56\)
b) \(\frac{0,18\times1230+0,9\times4567\times2+3\times5310\times6}{1+4+7+10+....+52+55-514}\)
\(=\frac{0,18\times1230+\left(0,9\times2\right)\times4567+\left(3\times6\right)\times5310}{1+4+5+.....+52+55-514}\)
\(=\frac{0,18\times1230+0,18\times4567+0,18\times5310}{1+4+7+...+52+55-514}\)
\(=\frac{0,18\times\left(1230+4567+5310\right)}{\left(55+1\right)\times55\div2-514}\)
\(=\frac{0,18\times11107}{971}=\frac{1999,26}{971}\)
mình ra cũng giống bạn Forever _ Alone nhé!!!Chẳng qua mình không biết viết phân số
Tôi thấy bài này nó cứ sai sai
Ở chỗ \(\frac{1}{99.97}-\frac{1}{97.95}\)í
\(\frac{1}{97.95}>\frac{1}{99.97}\)mà ông Thám Tử THCS Nguyễn Hiếu CTV
violympic cho sai đề :
Đề đúng là tính : \(A=\frac{1}{99.97}-\frac{1}{97.95}-\frac{1}{95.53}-....-\frac{1}{5.3}-\frac{1}{3.1}\)
Làm theo đề đúng !! ok
Ta có : \(A=\frac{1}{99.97}-\left(\frac{1}{97.95}+\frac{1}{95.53}+....+\frac{1}{5.3}+\frac{1}{3.1}\right)\)
\(=\frac{1}{99.97}-\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{95}-\frac{1}{97}\right)\)
\(=\frac{1}{99.97}-\frac{1}{2}\left(1-\frac{1}{97}\right)=\frac{1}{99.97}-\frac{48}{97}=-\frac{4751}{9603}\)
A=1/1.2+1/12.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
A=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
A=1/1-1/8
A=7/8
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(A=1-\frac{1}{8}\)
\(A=\frac{7}{8}\)
\(\frac{1}{2}+\left(\frac{16}{21}+\frac{27}{13}\right)-\left(\frac{14}{13}-\frac{5}{21}\right)\)
\(=\frac{1}{2}+\frac{16}{21}+\frac{27}{13}-\frac{14}{13}+\frac{5}{21}\)
\(=\left(\frac{16}{21}+\frac{5}{21}\right)+\left(\frac{27}{13}-\frac{14}{13}\right)+\frac{1}{2}\)
\(=1+1+\frac{1}{2}\)
\(=\frac{5}{2}\)
#)Giải :
\(\frac{1}{2}+\left(\frac{16}{21}+\frac{27}{13}\right)-\left(\frac{14}{13}-\frac{5}{21}\right)\)
\(=\frac{1}{2}+\frac{16}{21}+\frac{27}{13}-\frac{14}{13}+\frac{5}{21}\)
\(=\frac{1}{2}+\left(\frac{16}{21}+\frac{5}{21}\right)+\left(\frac{27}{13}-\frac{14}{13}\right)\)
\(=\frac{1}{2}+1+1\)
\(=2\frac{1}{2}=\frac{5}{2}\)
Gọi \(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(\Rightarrow2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
=> 2A - A = \(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}+\frac{1}{64}\)
\(\Rightarrow A=1+\frac{1}{64}=\frac{65}{64}\)