cho tam giac ABC can tai A ,AMla duong trung tuyen (MthuocBC)tu diem D tren AM ke DE vuong goc AB , DF vuong goc AC
a) chung minh DE=DF
b) biet DE=3cm , AE=4cm tinh AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì G là giao điểm của 2 đường Trung tuyến AC và BH nên theo tính chất 3 đường trung tuyến
\(\Rightarrow\frac{AG}{AD}=\frac{2}{3}\)
b) do \(\Delta ABC\)cân tại A\(\Rightarrow\widehat{B}=\widehat{C}\)và \(AB=AC\)
Có AD là đường trung tuyến \(\Rightarrow BD=CD\)
Xét \(\Delta ABD\)và \(\Delta ACD\)ta có :
\(AB=AC\left(cmt\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
\(BD=CD\left(cmt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
c) \(\Delta ABC\)cân \(\Rightarrow AD\)vừa là đường trung tuyến vừa là đường cao \(\Rightarrow\widehat{A_1}=\widehat{A_2}\)
Xét \(\Delta AED\)và \(\Delta AFD\)có :
\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)
\(AD\)chung
\(\widehat{E_1}=\widehat{F}_2=\left(90^o\right)\)
\(\Rightarrow\Delta AED=\Delta AFD\left(ch-gn\right)\)
\(\Rightarrow ED=FD\left(dpcm\right)\)
d) Ta có \(BC=12cm\Rightarrow\frac{1}{2}BC=6m\)hay \(BD=CD=6cm\)
Lại có \(AD\)là đường cao ( do \(\Delta ABC\)cân nên vừa là đường trung tuyến vừa là đường cao )
Xét tam giác vuông \(ADC\), áp dụng định lý Py-ta-go , ta được \(AD^2+CD^2=AC^2\Rightarrow AD^2=AC^2-CD^2=10^2-6^2=100-36=64\)
\(\Rightarrow AD=8cm\)
từ a) có tỉ số \(\frac{AG}{AD}=\frac{2}{3}\Rightarrow\frac{AG}{8}=\frac{2}{3}\Rightarrow AG\approx5,4\)
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE
a: Xét tứ giác AEMD có
góc AEM=góc ADM=góc DAE=90 độ
nên AEMD là hình chữ nhật
b: Vì M đối xứng với N qua AB
nên ABvuông góc với MN tại E và E là trung điểm của MN
Xét tứ giác AMBN có
E là trung điểm chung của AB và MN
nên AMBN là hình bình hành
mà MA=MB
nên AMBN là hình thoi
c: Xét tứ giác ANMC có
NM//AC
NM=AC
Do đó: ANMC là hình bình hành
=>AM cắt CN tại trung điểm của mỗi đường
=>C,O,N thẳng hàg
a) ap dung pytago ta co:BC^2=AB^2+AC^2=4^2+4^2=32 <=>BC=4 can 2
b) xet 2 tam giac AHB va AHC co:
AB=AC(GT)
goc B=goc C(tam giac ABC vuong can)
Suy ra tam giac AHB=tam giac AHC
Do do HB=HC(2 canh tuong ung)
hay D la trung diem cua BC
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
Cô hướng dẫn nhé :)
Ta thấy \(\Delta EAD=\Delta BAC\) (Hai cạnh góc vuông)
nên góc AED bằng góc ABC. Lại có góc ABC bằng góc CAM (cùng phụ góc ACB)
Vậy góc AED bằng góc MAE hay tam giác EMA cân tại M hay EM = MA.
Ta thấy góc MAD phụ góc MAC, góc MDA phụ góc MEA nên góc MAD bằng góc MDA, hay tam giác AMD cân tại M, từ đó MA = MD.
Tóm lại EM = MA = MD nên M là trung điểm ED, hay AM là trung tuyến cảu tam giác ACE.
Chúc em thi tốt :))