K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

a: Xét tứ giác BHCK có 

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

a) Chứng minh : BHCK là hình bình hành 

Xét tứ giác BHCK có : MH = MK = HK/2

                                     MB = MI = BC/2 

Suy ra : BHCK là hình bình hành 

b) BK vuông góc AB và CK vuông góc AC

Vì BHCK là hình bình hành ( cmt ) 

Suy ra : BK // HC và CK // BH ( tính chất hình bình hành )

mà CH vuông góc AB = F và BH vuông góc AC = E ( gt )

Suy ra : BK vuông góc AB và CK vuông góc AC ( Từ vuông góc đến // )

c) Chứng minh : BIKC là hình thang cân 

Vì I đối xứng với H qua BC nên BC là đường trung bình của HI 

Mà M thuộc BC    Suy ra : MH = MI ( tính chất đường trung trực ) 

mà MH = MK = HK/2 (gt)

Suy ra : MI = MH = MK = 1/2 HC 

Suy ra : Tam giác HIK vuông góc tại I 

mà BC vuông góc HI (gt)

Suy ra : IC // BC 

Suy ra : BICK là hình thang  (1) 

Ta có : BC là đường trung trực của HI (cmt) 

Suy ra : CI = CH 

 

 

2 tháng 5 2022

Tham khảo?

a: O là giao điểm của 3 đường trung trực của ΔABC

=>O là tâm đường tròn ngoại tiếp ΔABC

=>AM là đường kính của (O)

Xét (O) có

ΔABM nội tiếp đường tròn

AM là đường kính

=>ΔABM vuông tại B

=>BM vuông góc AB

=>BM//CH

Xét (O) có

ΔACM nội tiếp

AM là đường kính

=>ΔAMC vuông tại C

=>AC vuông góc CM

=>CM//BH

Xét tứ giác BHCM có

BH//CM

BM//CH

=>BHCM là hình bình hành

=>BC cắt HM tại trung điểm của mỗi đường

=>I là trung điểm của HM

b: Xét ΔMAH có

O,I lần lượt là trung điểm của MA,MH

=>OI là đường trung bình

=>OI//AH và OI=1/2AH

=>AH=2OI

18 tháng 10 2021

a) Tứ giác BHCKBHCK có 2 đường chéo HKHK và BCBC cắt nhau tại trung điểm MM của mỗi đường

Do đó tứ giác BHCKBHCK là hình bình hành

 

b) Tứ giác BHCKBHCK là hình bình hành

⇒BK∥CH⇒BK∥CH

Mà CH⊥ABCH⊥AB

⇒BK⊥AB⇒BK⊥AB (đpcm)

 

c) Gọi J=BC∩HIJ=BC∩HI

Xét ΔBHIΔBHI có BJBJ vừa là đường trung tuyến, vừa là đường cao nên ΔBHIΔBHI cân đỉnh B

⇒BJ⇒BJ là đường phân giác của ˆHBIHBI^

⇒ˆIBC=ˆHBC⇒IBC^=HBC^

mà ˆHBC=ˆKCBHBC^=KCB^ (hai góc ở vị trí so le trong do BH//CK)

Từ 2 điều trên ⇒ˆIBC=ˆKCB⇒IBC^=KCB^ (*)

ΔHIKΔHIK có JMJM là đường trung bình của tam giác, nên JM//IKJM//IK

Hay BC//IK⇒BIKCBC//IK⇒BIKC là hình thang (**)

Từ (*) và (**) suy ra BIKCBIKC là hình thang cân.

 

d) Tứ giác GHCKGHCK có GK∥HCGK∥HC

Do đó GHCKGHCK là hình thang

Để GHCKGHCK là hình thang cân thì ˆGHC=ˆKCHGHC^=KCH^

mà ˆKCH=ˆHBKKCH^=HBK^ (hai góc cùng bù ˆBHCBHC^ do BHCKBHCK là hình bình hành)

Từ hai điều trên ⇒ˆGHC=ˆHBK⇒GHC^=HBK^

ΔHJC:ˆHCJ=90o−ˆGHCΔHJC:HCJ^=90o−GHC^ (tổng ba góc trong tam giác bằng 180o180o)

ˆABH=ˆABK−ˆHBK=90o−ˆHBKABH^=ABK^−HBK^=90o−HBK^ (BK⊥ABBK⊥AB)

Từ 3 điều trên suy ra ˆHCJ=ˆABHHCJ^=ABH^

Mà ΔBCF:ˆFBC=90o−ˆHCJΔBCF:FBC^=90o−HCJ^

ΔABE:ˆEAB=90o−ˆABHΔABE:EAB^=90o−ABH^

Từ 3 điều trên ⇒ˆFBC=ˆEAB⇒FBC^=EAB^

hay ˆCBA=ˆCABCBA^=CAB^

⇒ΔABC⇒ΔABC cân đỉnh CC

ΔABCΔABC cân đỉnh CC thì GHCKGHCK là hình thang cân.

18 tháng 10 2021

Cảm ơn bạn

15 tháng 11 2021

a: Xét tứ giác BHCK có 

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

15 tháng 11 2021

b) Ta có: Tứ giác BHCK là hình bình hành.

=> HC//BK mà H thuộc FC (gt)

=> FC//BK(1)

FC vuông góc với AB(gt)(2)

Từ (1)(2) suy ra AB vuông góc với  BK

Tương tự:

Có: tứ giác BHCK là hbh(cmt)

=> BH//KC mà H thuộc EB(gt)

=> BE// KC mà BE vuông góc với AC=> KC vuông góc với  AC

12 tháng 11 2021

a: Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

13 tháng 11 2021

Còn câu b nữa bạn ơi!