K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

bài 66 trang 49 sách bài tập toán lớp 7

24 tháng 5 2017

Giải bài 56 trang 80 SGK Toán 7 Tập 2 | Giải toán lớp 7

+ Giả sử ∆ABC vuông tại A.

d1 là đường trung trực cạnh AB, d2 là đường trung trực cạnh AC.

d1 cắt d2 tại M. Khi đó M là điểm cách đều ba đỉnh của tam giác ABC.

+ Áp dụng kết quả bài 55 ta có B, M, C thẳng hàng.

QUẢNG CÁO

+ M cách đều A, B, C ⇒ MB = MC ⇒ M là trung điểm của cạnh BC (đpcm)

+ M là trung điểm của cạnh BC (đpcm)

*) Giả sử AM là trung tuyến của tam giác ABC suy ra M là trung điểm của cạnh BC

⇒ MB = MC = BC/2

Mà MA = MB = MC (cmt)

⇒ MA = BC/2

Vậy độ dài đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa độ dài cạnh huyền.

19 tháng 4 2017

a) Giả sử ∆ABC vuông góc tại A. Vẽ hai đường trung trực của hai cạnh góc vuông AB, AC cắt nhau tại M. Ta chứng minh M là trung điểm của BC.

Vì M là giao điểm hai đường trung trực d1, d2

của AB, AC mà AB ⊥ AC nên B, M, C thẳng hàng (bài tập 55)

Vì MA = MB (M thuộc đường trung trực của AB)

MA = MC (M thuộc đường trung trực của AC)

=> MB = MC

Do B, M, C thẳng hàng và M cách đều BC nên M là trung điểm của BC

b) M là trung điểm Bc => MB = 1212 BC

mà AM = MB nên MA =1212 BC

Vậy độ dài đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa độ dài cạnh huyền.

19 tháng 4 2017

a) Giả sử ∆ABC vuông góc tại A. Vẽ hai đường trung trực của hai cạnh góc vuông AB, AC cắt nhau tại M. Ta chứng minh M là trung điểm của BC.

Vì M là giao điểm hai đường trung trực d1, d2

của AB, AC mà AB ⊥ AC nên B, M, C thẳng hàng (bài tập 55)

Vì MA = MB (M thuộc đường trung trực của AB)

MA = MC (M thuộc đường trung trực của AC)

=> MB = MC

Do B, M, C thẳng hàng và M cách đều BC nên M là trung điểm của BC

b) M là trung điểm Bc => MB = 1212 BC

mà AM = MB nên MA =1212 BC

Vậy độ dài đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa độ dài cạnh huyền



5 tháng 8 2017

a) Giả sử ∆ABC vuông góc tại A. Vẽ hai đường trung trực của hai cạnh góc vuông AB, AC cắt nhau tại M. Ta chứng minh M là trung điểm của BC.

Vì M là giao điểm hai đường trung trực d1, d2

của AB, AC mà AB ⊥ AC nên B, M, C thẳng hàng (bài tập 55)

Vì MA = MB (M thuộc đường trung trực của AB)

MA = MC (M thuộc đường trung trực của AC)

=> MB = MC

Do B, M, C thẳng hàng và M cách đều BC nên M là trung điểm của BC

b) M là trung điểm Bc => MB =  BC

mà AM = MB nên MA = BC

Vậy độ dài đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa độ dài cạnh huyền.

26 tháng 12 2017

Xét hai tam giác vuông DAC và DBA ,ta có:

∠ (ADC) =  ∠ (BDA) = 90 0

∠ C =  ∠ (DAB) (hai góc cùng phụ ∠ B )

Suy ra:  △ DAC đồng dạng △ DBA (g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇒ D A 2 = D B . D C

hay DA = D B . D C =  9 . 16  = 12 (cm)

Áp dụng định lí Pi-ta-go vào tam giác vuông ABD, ta có:

A B 2 = D A 2 + D B 2 = 9 2 + 12 2  = 225 ⇒ AB =15 (cm)

Áp dụng định lí Pi-ta-go vào tam giác vuông ACD,ta có:

AC2 = DA2 + DC2 = 122 +162 = 400 ⇒ AC = 20cm

Vậy BC = BD + DC = 9 + 16 = 25(cm)

30 tháng 5 2017

\(AB^2 + AC^2 = 25^2 = 625\)

\(AD^2 + 81 = AB^2\)

\(AD^2 + 256 = AC^2\)

\(=> AD^2 + 81 + AD^2 + 256 = 625\)

=> \(2AD^2 = 288\)

=> \(AD^2 = 144\)

=> AD = 12(cm)

=>\( AB^2 = 9^2 + 12^2 = 225\)

=> AB = 15 (cm)

=> \(AC^2 = 12^2 + 16^2 = 400\)

=> AC = 20(cm)

và BC = 25(cm)

27 tháng 5 2017

Hỏi đáp Toán

Ta có: \(BC=BD+DC=9+16=25\left(cm\right)\)

Xét \(\Delta DBA\)\(\Delta ABC\):

\(\widehat{A}=\widehat{D}\left(=90^o\right)\)

\(\widehat{B}=\widehat{A_2}\)(cùng phụ với góc\(A_1\))

\(\Rightarrow\Delta DBA\)~\(\Delta ABC\)

\(\Rightarrow\dfrac{DB}{AB}=\dfrac{AB}{BC}\Leftrightarrow AB^2=DB.BC=9.25=225\Rightarrow AB=15\left(cm\right)\)

Áp dụng định lý Py-ta-go cho tam giác vuông ABC, có:

\(AB^2+AC^2=BC^2\Leftrightarrow15^2+AC^2=25^2\Rightarrow AC=\sqrt{25^2-15^2}=20\)

Vậy các cạnh của tam giác vuông ABC lần lượt là: \(15;20;25\)

17 tháng 5 2018

Giải bài 25 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

ΔABC vuông tại A có BC2 = AB2 + AC2 (định lí Pitago)

⇒ BC2 = 32 + 42 = 25 ⇒ BC = 5 (cm)

Gọi M là trung điểm của BC ⇒ AM là trung tuyến.

Vì theo đề bài: trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên

Giải bài 25 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7