TÍNH HỢP LÝ
\(\frac{1}{5^{100}}-\frac{1}{5^{99}}-\frac{1}{5^{98}}-...-\frac{1}{5}-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=1+\frac{1}{99}+1+\frac{1}{98}+1+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{100}{99}+\frac{99}{98}+\frac{96}{95}\)
\(\Leftrightarrow\left(\frac{x-1}{99}-\frac{100}{99}\right)+\left(\frac{x-2}{98}-\frac{99}{98}\right)+\left(\frac{x-5}{95}-\frac{96}{95}\right)=0\)
\(\Leftrightarrow\frac{x-101}{99}+\frac{x-101}{98}+\frac{x-101}{95}=0\)
\(\Leftrightarrow\left(x-101\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=0\)
\(\Leftrightarrow x-101=0\)
\(\Leftrightarrow x=101\)
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=1+\frac{1}{99}+1+\frac{1}{98}+1+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{100}{99}+\frac{99}{98}+\frac{96}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}-\frac{100}{99}-\frac{99}{98}-\frac{96}{95}=0\)
\(\Leftrightarrow\left(\frac{x-1}{99}-\frac{100}{99}\right)+\left(\frac{x-2}{98}-\frac{99}{98}\right)+\left(\frac{x-5}{95}-\frac{96}{95}\right)=0\)
\(\Leftrightarrow\frac{x-101}{99}+\frac{x-101}{98}+\frac{x-101}{95}=0\)
\(\Leftrightarrow\left(x-101\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=0\)
Do \(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\ne0\)
Mà \(x-101=0\Leftrightarrow x=101\)
Vậy x = 101
Tính toán giá trị biểu thức:
Bước 1: Phân tích biểu thức:
Ta có thể nhóm các hạng tử trong biểu thức thành các nhóm có dạng:
(3^(n-1)/3 + 3^n/3 + 3^(n+1)/3 + 3^(n+2)/3) . 3^(n+4)
Với n = 1, 5, 9, ..., 97.
Bước 2: Tính giá trị từng nhóm:
Xét nhóm thứ nhất:
(3^0/3 + 3^1/3 + 3^2/3 + 3^3/3) . 3^5
= (1 + 3 + 3^2 + 3^3) . (3^4 . 3)
= (1 + 3 + 3^2 + 3^3) . 81
Ta có thể sử dụng công thức khai triển tổng của cấp số nhân để tính giá trị trong ngoặc:
1 + 3 + 3^2 + 3^3 = (1 - 3^4) / (1 - 3) = 80
Do đó, giá trị của nhóm thứ nhất là:
(80) . 81 = 6480
Tương tự, ta có thể tính giá trị các nhóm tiếp theo:
Giá trị nhóm thứ hai: (80) . 3^4 . 81 = 6480 . 3^4
Giá trị nhóm thứ ba: (80) . 3^8 . 81 = 6480 . 3^8
...
Giá trị nhóm thứ 25: (80) . 3^96 . 81 = 6480 . 3^96
Bước 3: Cộng các giá trị từng nhóm:
Giá trị của biểu thức là tổng giá trị của các nhóm:
6480 + 6480 . 3^4 + 6480 . 3^8 + ... + 6480 . 3^96
= 6480 (1 + 3^4 + 3^8 + ... + 3^96)
Bước 4: Tính tổng 1 + 3^4 + 3^8 + ... + 3^96:
Đây là một cấp số nhân với số hạng đầu tiên là 1, công bội là 3^4 và có 25 số hạng.
Tổng của cấp số nhân này là:
(1 - (3^4)^25) / (1 - 3^4) = (1 - 3^100) / (1 - 81) = (1 - 3^100) / -80
Bước 5: Thay giá trị và kết luận:
Thay giá trị tổng vào biểu thức, ta được:
6480 (1 + 3^4 + 3^8 + ... + 3^96) = 6480 . (1 - 3^100) / -80
= -81(1 - 3^100)
Vậy, giá trị của biểu thức là -81(1 - 3^100).
Lưu ý:
Kết quả:
Giá trị của biểu thức là -81(1 - 3^100).
Chúc bạn thành công!
K = (\(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\))+...+\(\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)
\(=\left(3^1+3^2+3^3+3^4\right)+...+\left(3^1+3^2+3^3+3^4\right)\)
\(=120+...+120\)(Có 25 số 120)
\(=25.120\)
\(=300\)
vậy ...
Ta rút gọn 2 ở dưới vs 2 ở trên, rồi 3 ở dưới vs 3 ở trên cứ tiếp tục như vậy thì còn số 1/100, đó là kp của mình.
Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)
\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
\(A=\frac{B}{6}=\frac{100}{2}=50\)
Vậy \(A=50\)