Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài \(3\) cạnh tam giác lần lượt là \(x,y,z\left(x,y,z>0\right)\)
Ta có: \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7};x+y+z=30\)
Tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{3+5+7}=\dfrac{30}{15}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=2\Rightarrow x=6\\\dfrac{y}{5}=2\Rightarrow y=10\\\dfrac{z}{7}=2\Rightarrow z=14\end{matrix}\right.\)
Vậy: ...
gọi độ dài 3 cạnh của tam giác đó lần lượt là x;y;z(x;y;z>0)
ta có :
x/3=y/5=z/7 và x+y+z=150
áp dụng tc dãy ts = nhau ta có :
x/3=y/5=z/7=x+y+z/3+5+7=150/15=10
=>x/3=10=>x=30 cm
=>y/5=10=>y=50 cm
=>z/7=10=>z=70 cm
vậy ...
Gọi độ dài ba cạnh là x;y;z
Theo bài ra ta có : \(\frac{x}{3}+\frac{x}{5}+\frac{x}{7}=150\)
Áp dụng dãy tỉ bằng nhau : \(\frac{x}{3}+\frac{x}{5}+\frac{x}{7}=\frac{150}{15}=10\)
\(\Rightarrow\) \(\frac{x}{3}=10\Rightarrow x=30\)
\(\Rightarrow\frac{y}{5}=10\Rightarrow x=50\)
\(\Rightarrow\)\(\frac{z}{7}=10\Rightarrow z=70\)
P/s : Sai đừng trách nha - Bởi mình mới lớp 6
\(a,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c<120)
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\\ \Rightarrow \begin{cases} a=10.3=30\\ b=10.4=40\\ c=10.5=50 \end{cases} \)
Vậy ...
\(b,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c)
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{80}{4}=20\\ \Rightarrow \begin{cases} a=20.3=60\\ b=20.5=100\\ c=20.7=140 \end{cases}\\ \Rightarrow P=a+b+c=300(cm)\)
Gọi độ dài mỗi cạnh của tam giác lần lượt là x(cm),y(cm),z(cm) . Theo đề bài ta có :
\(x:y:z=3:4:6\)hay \(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}\)và x + y + z = 65
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{x+y+z}{3+4+6}=\frac{65}{13}=5\)
=> \(\hept{\begin{cases}\frac{x}{3}=5\\\frac{y}{4}=5\\\frac{z}{6}=5\end{cases}}\Rightarrow\hept{\begin{cases}x=15\\y=20\\z=30\end{cases}}\)
gọi độ dài mỗi cạnh lần lượt là A, B, C
Ta có: \(\frac{A}{3}=\frac{B}{4}=\frac{C}{6}=\frac{A+B+C}{3+4+6}=\frac{65}{13}=5\)
Độ dài mỗi cạnh là:
C1:\(\frac{A}{3}=5\Rightarrow A=5\cdot3=15cm\)
C2:\(\frac{B}{4}=5\Rightarrow B=5\cdot4=20cm\)
C3:\(\frac{C}{6}=5\Rightarrow C=5\cdot6=30cm\)
\(\Rightarrow\)Độ dài lần lượt của ba cạnh của hình tam giác là 15cm, 20cm, 30cm
gọi độ dài 3 cạnh của tam giác ấy là a,b,c và chúng lần lượt tỷ lệ với 3;5;7
theo đề ra ta có : \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)và a+b+c=150
áp dụng tính chất của dãy tỷ số bằng nhau :
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+4}=\frac{150}{12}=\frac{25}{2}\)
thay số vào rồi tính ạ
Chu vi của tam giac là: 21 + 6 = 27 (m)
Độ dài mỗi cạnh là: 27 : 3 = 9 (m)
Đáp số: 9 m
Vậy đáp án cần chọn là D
Gọi độ dài từng cạnh của tam giác đó lần lượt là a,b,c(a,c,b>0)
Theo đề bài ta có: \(\hept{\begin{cases}a+b+c=3\\\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{3}{12}=\frac{1}{4}\)
\(\Rightarrow\hept{\begin{cases}a=\frac{3}{4}\\b=1\\c=\frac{5}{4}\end{cases}}\)
Gọi ba cạnh của tam giác lần lượt là a,b,c.(0< a,b,c <3; đơn vị:cm)
Theo bài ra ta có : \(\hept{\begin{cases}\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\\a+b+c=3\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{3}{12}=\frac{1}{4}\)
\(\frac{a}{3}=\frac{1}{4}\Rightarrow a=\frac{3}{4}\left(cm\right)\)
\(\frac{b}{4}=\frac{1}{4}\Rightarrow b=1\left(cm\right)\)
\(\frac{c}{5}=\frac{1}{4}\Rightarrow c=\frac{5}{4}\left(cm\right)\)
Gọi ba cạnh tam giác là \(x;y;z\)
Theo đề bài :
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=x+y+z=30\)
Theo dãy tính chất tỉ số bằng nhau ta có :
\(\frac{x}{3}+\frac{y}{5}+\frac{z}{7}=\frac{x+y+z}{15}=\frac{30}{15}=2\)
\(\frac{x}{5}=2=x=5.2=10\)
\(\frac{y}{5}=2=y=5.2=10\)
\(\frac{z}{7}=2=z=7.2=14\)
+) Gọi 3 cạnh của tam giác lần lượt là a, b, c ( cm, a, b, c > 0)
+) Vì a, b, c tỉ lệ với 3, 5, 7 => \(\frac{a}{3}\)=\(\frac{b}{5}\)= \(\frac{c}{7}\)
+) Vì chu vi của tam giác đó là 30cm => a + b + c = 30
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}\)= \(\frac{b}{5}\)= \(\frac{c}{7}\)= \(\frac{a+b+c}{3+5+7}\)= \(\frac{30}{15}\)= 2
=> \(\frac{a}{3}\)= 2 => a = 3.2 => a = 6
và \(\frac{b}{5}\)= 2 => b = 5.2 => b = 10
và \(\frac{c}{7}\)= 2 => c = 7.2 => c = 14
Vậy 3 cạnh của tam giác đó lần lượt là 6cm, 10cm, 14cm
- Chúc bạn học tốt nhé -