K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có 

IM là tiếp tuyến

IB là tiếp tuyến

Do đó: IM=IB

mà IA=BI

nên IA=IM

b: Xét ΔABM có 

MI là đường trung tuyến

MI=AB/2

Do đó: ΔMAB vuông tại M

c: Xét (O) có

ΔBMC nội tiếp

BC là đường kính

Do đó: ΔBMC vuông tại M

hay BM⊥CM

mà BM⊥AM

và CM,AM có điểm chung là M

nên A,M,C thẳng hàng

a: Xét (O) có

IB,IM là tiếp tuyến

nên IB=IM=IA

=>ΔIMA cân tại I

b: IB=IM

OB=OM

Do đó: OI là trung trực của BM

=>OI vuông góc với BM

=>K là trung điểm của BM

Xét ΔBMA có BK/BM=BI/BA

nên KI//MA và KI=1/2MA

=>AM=2KI

c: BK=BM/2=3cm

\(OK=\sqrt{4^2-3^2}=\sqrt{7}\left(cm\right)\)

\(OK\cdot OI=OB^2\)

=>OI*căn 7=6^2=36

=>\(OI=\dfrac{36}{\sqrt{7}}\left(cm\right)\)

20 tháng 4 2020

A B C M I O D

20 tháng 4 2020

a.Vì AB là tiếp tuyến của (O)

\(\Rightarrow MB\) là tiếp tuyến của (O)

\(\Rightarrow\widehat{MBI}=\widehat{BCM}\)

\(\Rightarrow\Delta MBI~\Delta MCB\left(g.g\right)\)

b ) Từ câu a ) \(\Rightarrow\frac{MB}{MC}=\frac{MI}{MB}\Rightarrow MB^2=MI.MC\)

Mà M là trung điểm AB \(\Rightarrow MA=MB\Rightarrow MA^2=MI.MC\)

\(\Rightarrow\frac{MA}{MI}=\frac{MC}{MA}\Rightarrow\Delta MAI~\Delta MCA\left(c.g.c\right)\)

c ) Từ câu a , b \(\Rightarrow\widehat{MBI}=\widehat{MCI},\widehat{MAI}=\widehat{ACI}\)

\(\Rightarrow\widehat{BCD}=\widehat{BID}=\widehat{IBA}+\widehat{IAB}=\widehat{ICB}+\widehat{ICA}=\widehat{BCA}=\widehat{BDC}\)

\(\Rightarrow\Delta BCD\) cân tại B

26 tháng 5 2021

undefinedundefinedundefined

a: Xét tứ giác OBAC có 

\(\widehat{OBA}+\widehat{OCA}=180^0\)

Do đó: OBAC là tứ giác nội tiếp

hay O,B,A,C cùng thuộc 1 đường tròn

a Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc với BC

=>OH*OA=OB^2=R^2

b: góc ABM=góc ACM

góc HBM=90 độ-góc OMB=90 độ-góc OBM=góc ABM

=>BM là phân giác của góc ABH