Cho tổng sau : \(S=2+2\times2^2+3\times2^3+4\times2^4+.......+2014\times2^{2014}\)
a) Chứng tỏ rằng S+2011 chia hết cho 2013
b) Tìm chữ số tận cùng của S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Số số hạng là \(\dfrac{2018-2}{2}+1=1009\left(số\right)\)
Tổng là: \(\dfrac{2018+2}{2}\cdot1009=1009\cdot1010=1019090\)
b: \(10S=10^2+10^3+...+10^{101}\)
\(\Rightarrow9S=10^{101}-10\)
hay \(S=\dfrac{10^{101}-10}{9}\)
c: \(5S=1+\dfrac{1}{5}+...+\dfrac{1}{5^{99}}\)
\(\Leftrightarrow4S=1-\dfrac{1}{5^{100}}\)
hay \(S=\dfrac{1}{4}\left(1-\dfrac{1}{5^{100}}\right)\)