a) Cho \(M=\frac{42-x}{x-15}\). Tìm số nguyên x để M đạt gtri nhỏ nhất.
b) Tìm x sao cho: \(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2^{ }}\right)^{x+4}=17\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$M=\frac{27}{x-15}-1$
Để $M$ min thì $\frac{27}{x-15}$ min.
Để $\frac{27}{x-15}$ min thì $x-15$ là số âm lớn nhất
$\Rightarrow x$ là số nguyên lớn nhất nhỏ hơn 15
$\Rightarrow x=14$
Khi đó: $M_{\min}=\frac{42-14}{14-15}=-28$
Bài 2:
\(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x-4}=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}\left[\left(\dfrac{1}{2}\right)^4+1\right]=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}.\dfrac{17}{16}=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}=16=\left(\dfrac{1}{2}\right)^{-4}\)
$\Rightarrow x-4=-4\Leftrightarrow x=0$
a
\(ĐKXĐ:x\in R\)
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4-x^2+1\right)\)
\(=\frac{\left(x^2-1\right)\left(x^4-x^2+1\right)}{x^4-x^2+1}-\frac{x^4-x^2+1}{x^2+1}\)
\(=x^2-1-\frac{x^4-x^2+1}{x^2+1}\)
\(=-1+\frac{x^4+x^2-x^4+x^2+1}{x^2+1}\)
\(=\frac{2x^2+1}{x^2+1}-1=\frac{2x^2+1-x^2-1}{x^2+1}=\frac{x^2}{x^2+1}\)
b
Xét \(x>0\Rightarrow M>0\)
Xét \(x=0\Rightarrow M=0\)
Xét \(x< 0\Rightarrow M>0\)
Vậy \(M_{min}=0\) tại \(x=0\)
\(ĐKXĐ:x\ne2;x\ne-2;x\ne0\)
\(a,P=\left(\frac{-1}{2-x}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right)\left(\frac{2}{x}-1\right)\)
\(P=\left(\frac{-2-x+2-x-2x}{\left(2-x\right)\left(2+x\right)}\right)\left(\frac{2-x}{x}\right)\)
\(P=\frac{-4x}{\left(2-x\right)\left(2+x\right)}\frac{2-x}{x}\)
\(P=\frac{-4}{2+x}\)
\(b,P=\frac{-4}{2+x}=\frac{1}{2}\)
\(2+x=-8\)
\(x=-10\)
\(c,P=-\frac{4}{2+x}\)
\(< =>-4⋮x+2\)
lập bảng ra thì bạn ra đc \(x=\left\{2;-1;-3;-6\right\}\)
a)\(P=\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right)\left(\frac{2}{x}-1\right)\)
\(P=\left(\frac{1}{x-2}+\frac{2x}{\left(x+2\right)\left(x-2\right)}+\frac{1}{2+x}\right).\frac{2-x}{x}\)
\(P=\frac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}\)
\(P=\frac{4x}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}\)
\(P=\frac{-4}{x+2}\)
b) Để P=1/2
\(\Rightarrow-\frac{4}{x+2}=\frac{1}{2}\)
\(\Leftrightarrow-8=x+2\)
\(\Leftrightarrow x=-10\)
c) Để P nhận GT nguyên
\(\Rightarrow\left(x+2\right)\inƯ_{\left(-4\right)}\)
\(\Rightarrow\left(x+2\right)\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow x=\left\{-3;-1;-4;0;-6;2\right\}\)
#H
\(ĐKXĐ:x\ne0;x\ne\pm2\)
a) \(M=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(\Leftrightarrow M=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\)
\(\Leftrightarrow M=\frac{3x^2-6x\left(x+2\right)+3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)
\(\Leftrightarrow M=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(\Leftrightarrow M=\frac{-18x\left(x+2\right)}{18x\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow M=-\frac{1}{x-2}\)
\(\Leftrightarrow M=\frac{1}{2-x}\)
b) Để M đạt giá trị lớn nhất
\(\Leftrightarrow2-x\)đạt giá trị nhỏ nhất
\(\Leftrightarrow x\)đạt giá trị lớn nhất
Vậy để M đạt giá trị lớn nhất thì x phải đạt giá trị lớn nhất \(\left(x\inℤ\right)\)
玉明, bạn làm sai rồi. Dấu ngoặc vuông là dấu phần nguyên không phải dấu ngoặc thường
a, \(ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
b, \(R=\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)
\(=\left(\frac{x^2-2x+1}{x^2+x+1}-\frac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{1}{x-1}\right):\frac{x\left(x+1\right)}{x\left(x^2+1\right)}\)
\(=\left(\frac{\left(x^2-2x+1\right)\left(x-1\right)-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\right)\)
\(=\frac{x^3-3x^2+3x-1+3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)
\(=\frac{x^3-1}{x^3-1}.\frac{x^2+1}{x+1}=\frac{x^2+1}{x+1}\)
\(b,\) Để R = 0
\(\Leftrightarrow\frac{x^2+1}{x+1}=0\Leftrightarrow x^2+1=0\) ( vô lý)
Vậy ko có giá trị nào của x để R =0
\(c,\left|R\right|=1\Leftrightarrow\left[{}\begin{matrix}R=-1\\R=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x^2+1}{x+1}=-1\\\frac{x^2+1}{x+1}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+1=-x-1\\x^2+1=x+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=0\\x^2-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)