K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Lời giải:

Giả sử có tồn tại. Khi đó:

$x^3=3x^5+6x^2-18x-213\vdots 3$

$\Rightarrow x\vdots 3$. Đặt $x=3a$ với $a$ nguyên. Khi đó:

$3(3a)^5-(3a)^3+6(3a)^2-18.3a=213$

$729a^5-27a^3+54a^2-54a=213$

$81a^5-3a^3+6a^2-6a=\frac{71}{3}$ (vô lý vì vế trái nguyên còn vế phải thì không)

Do đó không tồn tại số nguyên $x$ thỏa mãn đẳng thức đã cho

24 tháng 2 2020

Câu hỏi của FFPUBGAOVCFLOL - Toán lớp 7 - Học toán với OnlineMath

9 tháng 2 2018

Ta có: -3 = 3.(-1) = 1.(-3)

Như vậy các số thoả mãn đẳng thức trên chỉ có thể là -3; 1; 3 hoặc -1

Do x < 4 + x nên x chỉ có thể bằng -1 hoặc – 3.

Với x = -3 ta có: 4 + x = 4 + (-3) =1 => (-3).1 = -3 (thoả mãn)

Với x = -1 ta có: 4 + x = 4 + (-1) = 3 => (-1).3 = -3 (thoả mãn)

Vậy x = -3 hoặc x = -1

13 tháng 2 2019

1. 

Vì lx+3l lớn hơn hoặc bằng 0 

    lx-3l lớn hơn hoặc bằng 0 

    lx+6l lớn hơn hoặc bằng 0 

nên lx+3l+lx-3+lx+6l lớn hơn hoặc bằng 0 

Hay 6x-18 lớn hơn hoặc bằng 0 

=> 6x lớn hơn hoặc bằng 18

=> x lớn hơn hoặc bằng 3

Vậy....

Còn đề bài câu 2 chưa ghi hết nhé!

5 tháng 12 2016

giả sử có các số nguyên x,y,z thỏa mãn các đẳng thức đã cho 

xét x^3 + xyz= 975 ta có

x^3 + xyz= x(x^2+yz)=975 => x là số lẻ

tương tự xết y^3 + xyz và z^3 + xyz ta cũng đc y,z là số lẻ

x là số lẻ => x^3 là số lẻ 

=> x^3+xyz là số chẵn 

trái với đề bài nên ko tồn tại số nguyên x,y,z thỏa mãn đẳng thức đã cho

28 tháng 6 2023

 Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).

 Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,

Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)

Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.

Như vậy, \(x=y=1\)

 Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.

Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)

Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn. 

Vậy pt đã cho không có nghiệm nguyên dương.

 

28 tháng 6 2023

Chị độc giải sau khi em biết làm thôi à.

3 tháng 11 2016

\(VT=2\left|x+3\right|+3\left|x+2\right|+4\left|x+1\right|+5\ge5\) với mọi x

=> VP = \(x\ge5\)

Với \(x\ge5\) ta có: 2(x + 3) + 3(x + 2) + 4(x + 1) + 5 = x

=> 2x + 6 + 3x + 6 + 4x + 4 + 5 = x

=> 9x + 21 = x

=> 9x - x = -21

=> 8x = -21

=> x < 0, không thỏa mãn đk \(x\ge5\)

Vậy không tìm được x thỏa mãn đăng thức như đề bài

4 tháng 11 2016

Ta có:

\(2\left|x+3\right|+3\left|x+2\right|+4\left|x+1\right|+5=x\)

Ta thấy: \(VT>0\)
Vậy \(x>0\)
Bỏ GTTĐ ta có :
\(8x=-21\)
Vậy x âm (Vô lý)
Không có giá trị của x thỏa mãn.