tìm một số tự nhiên nhỏ nhất sao cho chia số đó cho 17 thì dư 4 còn chia cho 19 dư 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x:19(dư 12) x=19n+12(1) (n là số tự nhiên)
x=19n+12 = 17n+(2n+12) mà x:17 dư 5 2n+7 chia hết cho 17
n=5+17k(2) (k là số tự nhiên)
Thay (2) vào (1) x=19(5+17k)+12=323k+107
Trả lời: x=323k +107 (cho k =0,1,2,3,...) x=107 ;430;753;1076 (thử chia cho 17;19 là biết đúng sai liền)
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Gọi số cần tìm là \(n\)thì \(n\)chia cho \(17\)dư \(5\)và chia cho \(19\)dư \(7\).
Suy ra \(n+12\)chia hết cho cả \(17\)và \(19\).
mà \(n\)nhỏ nhất nên \(n+12=BCNN\left(17,19\right)=323\)
\(\Leftrightarrow n=323-12=311\).
Gọi tt là số tự nhiên cần tìm.
t:15t:15 dư 5⇒t=17m+55⇒t=17m+5
t:19t:19 dư 11⇒t=19n+1111⇒t=19n+11
Do đó:
t+216=17m+221⋮17t+216=17m+221⋮17
t+216=17n+2280⋮19t+216=17n+2280⋮19
⇒t+216⋮17⇒t+216⋮17 và ⋮19⋮19
Mà tt là số tự nhiên nhỏ nhất nên t+216t+216 là BCNN(17;19)BCNN(17;19)
BCNN(17;19)=323BCNN(17;19)=323
⇒t+216=323⇒t+216=323
⇒t=323−216=107⇒t=323−216=107
Vậy, số cần tìm là 107.
số đó là : 95
số đó là : 106