A = x^15-8x^14+8x^13-8x^12+⋯-8x^2+8x-5 với x = 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=7
=>x+1=8
=> A= x^15 - 8x^14 + 8x^13 - 8x^12 +....- 8x^2 + 8x - 5
=x15-(x+1)x14+(x+1)x13-(x+1)x12+...-(x+1)x2+(x+1)x-5
=x15-x15-x14+x14+x13-x13-x12+...-x3-x2+x2+x-5
=x-5
=>A=7-5=2
Vậy A=2 khi x=7
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)
\(=2\)
thay x=7
ta có:7^15-8*7^14+887^13-8*7^12+...-8*7^2+8*7-2015
f(7)=7^15-8.7^14+8.7^13-8.7^12+...
-8.7^2+8.7-5=
= -7^14+8.7^13-8.7^12+...-8.7^2+8.7-5=
=7^13-8.7^12+...-8.7^2+8.7-5=
= -7^12+...-8.7^2+8.7-5=
=...= -7^2+8.7-5=7-5=2
Kết quả là 2
Ta có x =7
=>x+1=8
\(\Rightarrow\)\(A=x^{15}-8x^{14}+8x^{13}-8x^{12}+.......8x^2+8x-5\)
\(\Rightarrow x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...\left(x+1\right)x^2\)
\(+\left(x+1\right)x^5\)
\(\Rightarrow x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...-x^3-x^2+x-5\)
\(\Rightarrow x-5\Leftrightarrow A=7-5=2\Rightarrow A=2\)
Vậy A=2 khi x=7
Ta có:
x=7=>x+1=8
A=x15-(x+1)14+(x+1)x13-(x+1)x12+...-(x+1)x2+(x+1)x-5=x15-x15-x14+x14+x13-x13-x12+...-x3-x2+x2+x-5=7-5=2
Vậy A=2
Ta có : x = 7 ⇒ x + 1 = 8
Thay x + 1 = 8 vào A , ta được :
A = x15 - ( x + 1)x14 + ( x + 1)x13 - ( x + 1)x12 +....- ( x + 1)x2 + ( x + 1)x - 5
A = x15 - x15 - x14 + x14 + x13 - x13 - x12 +....- x3 - x2 + x2 + x - 5
A = x - 5 = 7 - 5 = 2
Ta có:
x = 7
=> x + 1 = 8 (1)
Thay (1) vào biểu thức ta được
\(x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...-x^3-x^2+x^2+x-5\)
\(=x-5\)
\(=7-5\)
\(=2\)
Ta có :
= x^15 - 8x^14 + 8x^13 - 8x^12 +... - 8x² + 8x - 5Từ \(x=7\Rightarrow x+1=8\) thay vào B ta được :
\(B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+......-x^3-x^2+x^2+x-5\)
\(=x-5=7-5=2\)
Vậy B = 2
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)
\(=2\)
x=7
nên x+1=8
\(A=x^{15}-x^{14}\left(x+1\right)+x^{13}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-5\)
\(=x-5=7-5=2\)