Cho a,b >= 4. Chứng minh a2+b2 +ab >= 6.(a+b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi vế trái ta có:
VT = (a + b)( a 2 – ab + b 2 ) + (a – b)( a 2 + ab + b 2 )
= a 3 + b 3 + a 3 – b 3 = 2 a 3 = VP
Vế trái bằng vế phải nên đẳng thức được chứng minh.
VP `=(a+b)(a^2-ab+b^2)`
`=a^3-a^2b+ab^2+a^2b-ab^2+b^3`
`=a^3+(a^2b-a^2b)+(ab^2-ab^2)+b^3`
`=a^3+b^3`
.
VP `=(a-b)(a^2+ab+b^2)`
`=a^3+a^2b+ab^2-a^2b-ab^2-b^3`
`=a^3+(a^2b-a^2b)+(ab^2-ab^2)-b^3`
`=a^3-b^3`
Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)
\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
có \(a\ge1348,b\ge1348\)\(=>ab=1348^2\)
và \(a+b\ge2696=>2022\left(a+b\right)\ge5451312\)
áp dụng BDT Cô si=>\(a^2+b^2+ab\ge3ab=3.1348^2=5451312\)
\(=>a^2+b^2+ab-2022\left(a+b\right)\ge5451312-5451312=0\)
\(=>a^2+b^2+ab\ge2022\left(a+b\right)\). Dấu'=' xảy ra<=>a=b=1348
Ta có
$$a^2+b^2+c^2-ab-bc-ca=0,$$
hay $$\dfrac{1}{2}\left[(a-b)^2+(b-c)^2 +(c-a)^2\right[ = 0.$$
Mà vế trái luôn không âm \(\forall a,b,c \in \mathbb{R}\), đẳng thức xảy ra khi $a=b=c.$
Vậy ta có điều cần chứng minh.
Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Ta có: \(VP=\left(a-b\right)\left(a^2+ab+b^2\right)-3ab\left(a-b\right)\)
\(=a^3-b^3-3a^2b+3ab^2\)
\(=a^3-3a^2b+3ab^2-b^3=\left(a-b\right)^3=VT\)
⇒ đpcm
\(\left(a-b\right)\left(a^2+ab+b^2\right)-3ab\left(a-b\right)\)
\(=\left(a-b\right)\left(a^2+ab+b^2-3ab\right)\)
\(=\left(a-b\right)^3\)
BĐT <=> 2a\(^2\)+ 2b\(^2\)+2ab >= 12(a+b)
<=> (a+b)\(^2\)+a\(^2\)+b\(^2\) - 12(a+b) >=0
<=> (a+b)\(^2\) -12(a+b) + 36 + a\(^2\)+b\(^2\) >=36
<=> (a+b-6)\(^2\)+a\(^2\)+b\(^2\)>=36
với a,b>=4
=> a\(^2\)>= 16 , b\(^2\)>=16 , (a+b-6)\(^2\)>=4
=> BĐT được chứng minh