Giúp mình 2 câu này với, vẽ đồ thị lun nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Lời giải:
Nói đơn giản thế này. Khi đề cho: Cho đồ thị hàm số $y=x+2$
- Hàm số: chính là $y=x+2$, biểu diễn mối quan hệ giữa biến $x$ và biến $y$. Hàm số hiểu đơn giản giống như phép biểu diễn mối quan hệ giữa hai biến.
- Đồ thị hàm số (hay đồ thị): Khi có hàm số rồi, người ta muốn biểu diễn nó trên mặt phẳng tọa độ ra được 1 hình thù nào đó thì đó là đồ thị hàm số. Ví dụ, đths $y=x+2$ có dạng như thế này:
- Tọa độ giao điểm của hai đồ thị: Khi ta vẽ được đồ thị trên mặt phẳng tọa độ, 2 đồ thị đó giao nhau ở vị trí nào thì đó chính là tọa độ giao điểm. Ví dụ, trên mp tọa độ ta có 2 đồ thị $y=-2x+3$ và $y=x+6$ chả hạn. Điểm $A$, có tọa độ $(-1,5)$ chính là giao điểm. Như vậy, $(-1,5)$ là tọa độ giao điểm.
- Nhìn hình vẽ của đồ thị chỉ giúp ta có cái nhìn trực quan hơn. Khi muốn tìm giao điểm của 2 đồ thị hàm số, người ta thường dùng hàm số để tìm cho nhanh, vì hàm số biểu diễn mối quan hệ giữa hai biến một cách "số hóa" hơn.
- Với nhiều hàm số trở lên thì ta cứ xét từng cặp 1 thôi.
bài 20 nè
gọi số tiền lãi là a,b,c tỷ lệ thuận 3;5;7=>a+b+c=225
ta có \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{225}{15}=15\)
=>a=15.3=45
b=15.5=75
c=105
bài 1 a)thế x=3;y=6 vào ta được a=2 đồ thị là y=2x
b)vẽ thì bạn nối từ gốc tọa độ đến đỉm đó thui
Giao điểm của 2 đồ thị 1 và 2 là:
-x+3m=2x-(m+6) <=> 3x=4m+6 => \(x_1=\frac{4m+6}{3}\); \(y_1=-\frac{4m+6}{3}+3m=\frac{5m-6}{3}\)
Để giao điểm nằm trên đồ thì y=x+1 thì x1 và y1 phải là nghiệm của PT: y=x+1
=> \(\frac{5m-6}{3}=\frac{4m+6}{3}+1\) <=> 5m-6=4m+6+3 => m=15
Đáp số: m=15
Bài 22:
a: f(2)=0
f(-0.75)=10,3125
22.
\(a,f\left(2\right)=2^2-5.2+6=4-10+6=0\\ f\left(-0,75\right)=\left(-0,75\right)^2-5\left(-0,75\right)+6=\dfrac{9}{16}+\dfrac{15}{4}+6=\dfrac{165}{16}\)
\(b,\text{để y=6 thì}x^2-5x+6=6\\ \Leftrightarrow x^2-5x=0\\ \Leftrightarrow x\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)