Các bạn giúp mình tìm nghiệm của đa thức sau:g(x)=(x-3)*(16-4x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x3+6x2+9x+7=0
<=>4x3+2x2+7x+4x2+2x+7=0
<=>x(4x2+2x+7)+(4x2+2x+7)=0
<=>(x+1)(4x2+2x+7)=0
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\4x^2+2x+7=0\left(2\right)\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\left(tm\right)\\\left(2\right)\Leftrightarrow4\left(x+\frac{1}{4}\right)^2+\frac{27}{4}>0\end{array}\right.\)
<=>(2) vô nghiệm
Vậy đa thức có 1 nghiệm duy nhất là x=-1
g(x) = ( x - 3 ) x ( 16 - 4x )
Ơ đay xẽ xảy ra hai trương hợp :
+) ( x - 3 ) = 0
x = 0 + 3
x = 3
+) ( 16 - 4x ) = 0
4x = 16 - 0
4x = 16
x = 16 : 4
x = 4
Đúng nha Hero chibi
a) f(x) = x(x - 5) + 2(x - 5)
x(x - 5) + 2(x - 5) = 0
<=> (x - 5)(x - 2) = 0
x - 5 = 0 hoặc x - 2 = 0
x = 0 + 5 x = 0 + 2
x = 5 x = 2
=> x = 5 hoặc x = 2
a, f(x) có nghiệm
\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
->tự kết luận.
b1, để g(x) có nghiệm thì:
\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)
\(\Rightarrow2x^2-4x-x^2+5+4x=0\)
\(\Rightarrow x^2+5=0\)
Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)
suy ra: k tồn tại \(x^2+5=0\)
Vậy:.....
b2,
\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)
\(=x^2-5x+2x-10\)
\(=x^2-3x-10\)
\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)
\(=x^2+5-x^2+3x-10=3x-5\)
a) P(x) = 5x3 - 3x + 7 - x
= 5x3 - 4x + 7
Q(x) = -4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 + 1
= -x3 + x2 + x + 1
b) M(x) = P(x) + Q(x)
= ( 5x3 - 4x + 7 ) + ( -x3 + x2 + x + 1 )
= 5x3 - 4x + 7 -x3 + x2 + x + 1
= 4x3 + x2 - 3x + 8
N(x) = P(x) - Q(x)
= ( 5x3 - 4x + 7 ) - ( -x3 + x2 + x + 1 )
= 5x3 - 4x + 7 + x3 - x2 - x - 1
= 6x3 - x2 - 5x + 6
c) M(x) = 4x3 + x2 - 3x + 8
M(x) = 0 <=> 4x3 + x2 - 3x + 8 = 0
( Bạn xem lại đề nhé chứ lớp 7 chưa học tìm nghiệm đa thức bậc 3 đâu )
Ta có: C(x) =\(x^2-9x+20=x^2-4x-5x+20=\left(x-4\right)\left(x-5\right)\)
Vậy nghiệm của C(x) là x\(\in\left\{4;5\right\}\)
Ta có: D(x)\(=4x^2+4x+1=\left(2x+1\right)^2\)
Vậy D(x) có nghiệm x=-1/2
Ta có: E(x)=\(2\left(x-1\right)-5\left(x-2\right)=2x-2-5x +10\)= \(8-3x\)
Vậy E(x) có nghiệm x=8/3
Ta có: F(x)=\(2x^2-5x+2=\left(2x^2-x\right)-\left(4x-2\right)\)= \(\left(x-2\right)\left(2x-1\right)\)
Vậy F(x) có nghiệm là x\(\in\left\{\frac{1}{2};2\right\}\)
\(C\left(x\right)=x^2-9x+20\)
\(C\left(x\right)=x^2-4x-5x+20\)
\(C\left(x\right)=\left(x-4\right)\left(x-5\right)\)
=> nghiệm của phương trình là x = 4 hoặc x = 5
\(D\left(x\right)=4x^2+4x+1\)
\(D\left(x\right)=\left(2x+1\right)^2\)
=> nghiệm của phương trình là x = -1/2
\(E\left(x\right)=2\left(x-1\right)-5\left(x-2\right)\)
\(E\left(x\right)=2x-2-5x+10\)
\(E\left(x\right)=-3x-7\)
=> nghiệm của phương trình là x = -7/3
\(F\left(x\right)=2x^2-5x+2\)
\(F\left(x\right)=2x^2-4x-x+2\)
\(F\left(x\right)=\left(x-2\right)\left(2x-1\right)\)
=> nghiệm của phương trình là x = 2 hoặc x = 1/2
`f( x) = 3x -6`
`-> 3x-6=0`
`=> 3x=0+6`
`=> 3x=6`
`=>x=6:3`
`=>x=2`
__
`h( x) =-5 x+30`
`-> -5x +30=0`
`=> -5x=0-30`
`=>-5x=-30`
`=>x=6`
__
`g(x) = ( x-3)(16-4x)`
`-> ( x-3)(16-4x)=0`
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\16-4x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\4x=16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
__
`k( x) = x^2-81`
`->x^2-81=0`
`=> x^2=81`
`=> x^2 =+-9^2`
\(\Rightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
\(3x-6=0\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Vậy nghiệm của đa thức f(x) là \(x=2\)
\(-5x+30=0\)
\(\Rightarrow-5x=-30\)
\(\Rightarrow x=6\)
Vậy nghiệm của đa thức h(x) là \(x=6\)
\(\left(x-3\right)\left(16-4x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\16-4x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\4x=16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy nghiệm của đa thức g(x) là \(x\in\left\{3;4\right\}\)
\(x^2-81=0\)
\(\Rightarrow x^2=81\)
\(\Rightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
Vậy nghiệm của đa thức k(x) là \(x\in\left\{9;-9\right\}\)
Ta có rằng nếu g(x)=0 thì:(x-3).(16-4.x)=0.Suy ra: x-3=(16-4.x)=0.
x-3=0.Suy ra:x=0+3=3:16-4.x=0.Suy ra 4.x=16-0=16.Suy ra x=16:4=4,thử lại..................................
(bước này tự thử).kl:4 và 3 là nghiệm của đa thức g(x)