cho A =\(\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+.......+\frac{1}{40}\)cmr \(\frac{1}{2}\)<A<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{20}{40}=\frac{1}{2}\)
=>A>\(\frac{1}{2}\) (*)
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}< \frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{20}{20}=1\)
=>A<1 (**)
Từ (*) và (**) => \(\frac{1}{2}< A< 1\)
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)
20 phân số 1/40
\(A>20x\frac{1}{40}=\frac{1}{2}\)
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}< \frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)
20 phân số 1/20
\(A< 20x\frac{1}{20}=1\)
Chứng tỏ 1/2 < A < 1
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.....+\frac{19}{9^2.10^2}\)
\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+......+\frac{10^2-9^2}{9^2.10^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+.....+\frac{1}{9^2}-\frac{1}{10^2}\)
\(=\frac{1}{1^2}-\frac{1}{10^2}=1-\frac{1}{10^2}<1\left(đpcm\right)\)
Đặt \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)
=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)
Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)
=>A<1/2+1/3=5/6<3/2
lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy
k minh nha
Ta có
\(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{60}+...+\frac{1}{80}\right)\) \(A>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}\right)\)
\(A>\frac{20}{40}+\frac{20}{60}+\frac{20}{80}\Rightarrow A>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\Rightarrow A>\frac{13}{12}\Rightarrow A>1\) (1)
LẠi có \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{60}+...+\frac{1}{80}\right)\)
\(A< \left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)
\(A< \frac{20}{20}+\frac{20}{40}+\frac{20}{60}\Rightarrow A< 1+\frac{1}{2}+\frac{1}{3}\Rightarrow A< \frac{11}{6}< \frac{12}{6}\Rightarrow A< 2\) (2)
Từ (1) và (2) suy ra điều phải CM