K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2021

Mình cảm ơn ạ

6 tháng 12 2017

Giả sử hai đa thức có nghiệm chung \(x_0\), ta thấy cả hai đa thức đều không nhận x = 0 là nghiêm nên \(x_0\ne0\) .

Ta có đồng thời:

   \(\hept{\begin{cases}x_0^4+ax_0^2+1=0\\x_0^3+ax+1=0\end{cases}}\)

Nhân cả hai vế của đẳng thức thứ hai với \(x_0\) rồi lấy đẳng thức thứ nhất trừ đi đẳng thức thứ hai ta được:

\(\left(x_0^4+ax_0^2+1\right)-x_0\left(x_0^3+ax_0+1\right)=0\)

=> \(1-x_0=0\)

=> \(x_0=1\)

Thức là nếu hai đa thức có nghiệm chung \(x_0\) thì nghiệm chung đó chỉ có thể bằng 1.

Để  x=1 là nghiệm chung của hai đa thức thì: \(1^4+a.1^2+1=0\) => a = -2

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.Cm đa thức không có nghiệm hữu tỉ2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZCmR các hệ số của P(x) chia hết cho 7.3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.Tính P(12)+P(−8)10P(12)+P(−8)104. Tìm đa thức P(x)...
Đọc tiếp

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))

1
AH
Akai Haruma
Giáo viên
19 tháng 4 2021

Lời giải:
a) 

$P(x)+Q(x)=4x^2+x-5+5x^3-2x^2+2x-1=5x^3+2x^2+3x-6$

b) 

$H(x)=P(x)+ax=4x^2+x-5+ax=4x^2+x(a+1)-5$

c) Để $H(x)$ có nghiệm $x=2$

$\Leftrightarrow H(2)=0$

$\Leftrightarrow 4.2^2+2(a+1)-5=0$

$\Leftrightarrow a=\frac{-13}{2}$

31 tháng 3 2022

Bài 1. 

a) Với P(1) thì P(x)= 3.1^2 + 2.1 + 1 = 6 

    Với Q(1/2) thì Q(x)= 3.(1/2)^2 + 1/2 - 2 = -0,75 

b) P(x) - Q(x)= 6-(-0,75)= 6,75