K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM có 

AC là đường trung tuyến

AC=MB/2

Do đó: ΔABM vuông tại A

b: Xét ΔMCN và ΔNAP có 

MC=NA

\(\widehat{MCN}=\widehat{NAP}\)

CN=AP

Do đó:ΔMCN=ΔNAP

Suy ra: MN=NP

Cm tương tự, ta được: ΔNAP=ΔPBM

Suy ra: NP=PM

hay MN=NP=PM

=>ΔMNP đều

17 tháng 8 2016

A B C M N P

 

a) Dễ dàng tính được : góc sCAM = góc CMA = \(\frac{180^o-120^o}{2}=30^o\)

=> góc BAC + góc CAM = 60 độ + 30 độ = 90 độ

=> MA vuông góc với AP

b) Dễ dàng cm được : tam giác ANP = tam giác CNM = tam giác PBM (c.g.c)

=> MN = MP = NP => MN = NP = MP

c) 

17 tháng 8 2016

giúp mình câu c luôn đi pạn

giúp mình rồi mình tick cho nha

a: Xét ΔABM có 

AC là đường trung tuyến

AC=MB/2

Do đó: ΔABM vuông tại A

b: Xét ΔMCN và ΔNAP có 

MC=NA

\(\widehat{MCN}=\widehat{NAP}\)

CN=AP

Do đó:ΔMCN=ΔNAP

Suy ra: MN=NP

Cm tương tự, ta được: ΔNAP=ΔPBM

Suy ra: NP=PM

hay MN=NP=PM

=>ΔMNP đều

a: Xét ΔABM có 

AC là đường trung tuyến

AC=MB/2

Do đó: ΔABM vuông tại A

b: Xét ΔMCN và ΔNAP có 

MC=NA

\(\widehat{MCN}=\widehat{NAP}\)

CN=AP

Do đó:ΔMCN=ΔNAP

Suy ra: MN=NP

Cm tương tự, ta được: ΔNAP=ΔPBM

Suy ra: NP=PM

hay MN=NP=PM

=>ΔMNP đều

a: Xét ΔABM có 

AC là đường trung tuyến

AC=MB/2

Do đó: ΔABM vuông tại A

b: Xét ΔMCN và ΔNAP có 

MC=NA

\(\widehat{MCN}=\widehat{NAP}\)

CN=AP

Do đó:ΔMCN=ΔNAP

Suy ra: MN=NP

Cm tương tự, ta được: ΔNAP=ΔPBM

Suy ra: NP=PM

hay MN=NP=PM

=>ΔMNP đều

14 tháng 9 2021

giúp vs

 

 

a: Xét ΔABM có 

AC là đường trung tuyến

AC=MB/2

Do đó: ΔABM vuông tại A

b: Xét ΔMCN và ΔNAP có 

MC=NA

\(\widehat{MCN}=\widehat{NAP}\)

CN=AP

Do đó:ΔMCN=ΔNAP

Suy ra: MN=NP

Cm tương tự, ta được: ΔNAP=ΔPBM

Suy ra: NP=PM

hay MN=NP=PM

=>ΔMNP đều

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét tứ giác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB//EC và AB=EC

c: Xét ΔBCD có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔBCD cân tại C

d: Xét ΔOBC có

OM là đường cao

OM là đường trung tuyến

Do đó: ΔOBC cân tại O

Suy ra: OB=OC(1)

Xét ΔOBD có
OA là đường cao

OA là đường trung tuyến

Do đó: ΔOBD cân tại O

Suy ra: OB=OD(2)

Từ (1) và (2) suy ra OB=OC=OD

hay O cách đều ba đỉnh của ΔBDC

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Xét ΔMBA và ΔMCD có 

MB=MC

\(\widehat{AMB}=\widehat{DMC}\)

MA=MD

Do đó: ΔMBA=ΔMCD