Cho có 3 góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H
a) Chứng minh rằng: tứ giác BFEC nội tiếp
b) Gọi I là điểm đối xứng của A qua O và M là trung điểm của BC. Chứng minh rằng BHCI là hình bình hành và AH=2OM
c) Gọi N là trung điểm của EF. Chứng minh rằng R.AN=AM.OM
a) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{BFC}\) và \(\widehat{BEC}\) cùng nhìn cạnh BC
Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)