K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2023

a) 2x+10=0->2x=-10->x=-5

b) 4(x-1)+3x-5=0->4x-4+3x-5=0

=7x-9=0->7x=-9->x=-1.28571428571

c)-1 1/3x^2+x=0

=-3x^2/-3x^2+x=0

=1+x=0

x=-1

 

c: =>-4/3x^2+x=0

=>x(-4/3x+1)=0

=>x=0 hoặc x=3/4

a: 2x+10=0

=>2x=-10

=>x=-5

b: =>4x-4+3x-5=0

=>7x-9=0

=>x=9/7

2 tháng 3 2023

a) `3x+5 =0`

`3x=-5`

`x=-5/3`

`b) -4x+8=0`

`-4x =-8`

`x=2`

`c) 3x -6=0`

`3x=6`

`x=2`

`d)x^2 +x =0`

`x(x+1) =0`

`=>[(x=0),(x=-1):}`

`e) x^2 -4 =0`

`x^2 =4`

`=> x = +-2`

`f) x^3 -27 =0`

`x^3 =27`

`=> x=3`

`g) 3x^2 +4 =0`

`3x^2 =-4`

`x^2 =-4/3(vô-lí)`

=> Đa thức ko có nghiệm

h) `x^3 -4x =0`

`x(x^2 -4) =0`

`=>[(x=0),(x^2=4 => x=+-2):}`

i) `2x^3 -32x =0`

`2x(x^2 -16)=0`

`=>[(2x=0),(x^2=16):}`

`=>[(x=0),(x=+-4):}`

a)Đặt A (x) = 0

hay \(3x-6=0\)

        \(3x\)      \(=6\)

          \(x\)      \(=6:3\)

          \(x\)      \(=2\)

Vậy \(x=2\) là nghiệm của A (x)

b) Đặt B (x) = 0

hay \(2x-10=0\)

       \(2x\)        \(=10\)

         \(x\)        \(=10:2\)

         \(x\)        \(=5\)

Vậy \(x=5\) là nghiệm của B (x)

c) Đặt C (x) = 0

hay  \(x^2-1=0\)

        \(x^2\)       \(=1\)

        \(x^2\)      \(=1:1\)

        \(x^2\)      \(=1\)

        \(x\)       \(=\overset{+}{-}1\)

Vậy \(x=1;x=-1\) là nghiệm của C (x)

d) Đặt D (x) = 0

hay \(\left(x-2\right).\left(x+3\right)=0\)

⇒ \(x-2=0\) hoặc \(x+3=0\)

*   \(x-2=0\)              * \(x+3=0\)

    \(x\)       \(=0+2\)           \(x\)       \(=0-3\)

    \(x\)       \(=2\)                 \(x\)        \(=-3\)

Vậy \(x=2\) hoặc \(x=-3\)  là nghiệm của D (x)

e) Đặt E (x) = 0

hay \(x^2-2x=0\)

    ⇔\(\left[{}\begin{matrix}x^2-2x\\\left(x-2\right)x\end{matrix}\right.\)

\(\left(x-2\right)x\)   

 ⇔   \(x.\left(2x-1\right)=0\)

  ⇔  \(\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\)                

\(\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=2\) là nghiệm của E (x)

f) Đặt F (x) = 0

hay \(\left(x^2\right)+2=0\)

         \(x^2\)          \(=0-2\)

        \(x^2\)           \(=-2\)

        \(x\)            \(=\overset{-}{+}-2\)

Do \(\overset{+}{-}-2\) không bằng 0 nên F (x) không có nghiệm

Vậy  đa thức F (x)  không có nghiệm

g) Đặt G (x) = 0

hay  \(x^3-4x=0\)

         ⇔\(\left[{}\begin{matrix}x^3-4x\\\left(x-4\right)x^2\end{matrix}\right.\)

⇒ \(\left(x-4\right)x^2=0\)

⇔ \(x.\left(4x-1\right)=0\)

         ⇔\(\left[{}\begin{matrix}x=0\\4x-1=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=\dfrac{1}{4}\) là nghiệm của G (x)

h) Đặt H (x) = 0

hay \(3-2x=0\)

            \(2x\)   \(=3+0\)

            \(2x\)   \(=3\)

              \(x\)   \(=3:2\)

              \(x\)    \(=\dfrac{3}{2}\)

Vậy \(x=\dfrac{3}{2}\) là nghiệm của H (x)

CÂU G) MIK KHÔNG BIẾT CÓ  2 NGHIỆM HAY LÀ 3 NGHIỆM NỮA

 

6 tháng 5 2022

a) cho A(x) = 0

\(=>2x^2-4x=0\)

\(x\left(2-4x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\4x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

b)\(B\left(y\right)=4y-8\)

cho B(y) = 0

\(4y-8=0\Rightarrow4y=8\Rightarrow y=2\)

c)\(C\left(t\right)=3t^2-6\)

cho C(t) = 0

\(=>3t^2-6=0=>3t^2=6=>t^2=2\left[{}\begin{matrix}t=\sqrt{2}\\t=-\sqrt{2}\end{matrix}\right.\)

 

6 tháng 5 2022

 

d)\(M\left(x\right)=2x^2+1\)

cho M(x) = 0

\(2x^2+1=0\Rightarrow2x^2=-1\Rightarrow x^2=-\dfrac{1}{2}\left(vl\right)\)

vậy M(x) vô nghiệm

e) cho N(x) = 0

\(2x^2-8=0\)

\(2\left(x^2-4\right)=0\)

\(2\left(x^2+2x-2x-4\right)=0\)

\(2\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

a) \(f\left(x\right)+g\left(x\right)=5x^2-4x+13+9x-7-5x^2=5x+6\)

\(f\left(x\right)-g\left(x\right)=5x^2-4x+13-9x+7+5x^2=10x^2-13x+20\)

23 tháng 10 2017

Nếu ol thì tham khảo nah nguoiemtinhthong.

1.1

2x2+5x−1=7x3−1−−−−−√2x2+5x−1=7x3−1

⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)−−−−−−−−−−−−−−−√(1)⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)(1)

Đặt a=x−1−−−−−√;b=x2+x+1−−−−−−−−√;a≥0;b>0a=x−1;b=x2+x+1;a≥0;b>0

pt (1) trở thành 3a2+2b2−7ab=03a2+2b2−7ab=0

a=2ba=2b v a=13ba=13b

Các bạn tự giải quyết tiếp nhé.

1.2

TXĐ D=[1;+∞)D=[1;+∞)

đặt a=x−1−−−−−√4;b=x+1−−−−−√4;a,b≥0a=x−14;b=x+14;a,b≥0

pt (2) trở thành 3a2+2b2−5ab=03a2+2b2−5ab=0

⇔a=b⇔a=b v a=23ba=23b

...

1.3

D=[3;+∞)D=[3;+∞)

Đặt a=x2+4x−5−−−−−−−−−√;b=x−3−−−−−√;a,b≥0a=x2+4x−5;b=x−3;a,b≥0

pt (3) trở thành 3a+b=11a2−19b2−−−−−−−−−√3a+b=11a2−19b2

⇔2a2−6ab−20b2=0⇔2a2−6ab−20b2=0

⇒a=5b⇒a=5b
...

1.4

ĐK

⇔2x2−2x+2=3(x−2)x(x+1)−−−−−−−−−−−−√2x2−2x+2=3(x−2)x(x+1)

⇔(x2−2x)+2(x+1)=3(x2−2x)(x+1)−−−−−−−−−−−−−√2(x2−2x)+2(x+1)=3(x2−2x)(x+1)

Đặt x2−2x−−−−−−√=ax2−2x=a; x+1−−−−−√=bx+1=b (a;b\geq0)

⇔2a2+2b2=3ab

1.5

Đặt 4x2−4x−10=t4x2−4x−10=t (t \geq 0)

⇔t=t+4x2−2x−−−−−−−−−−√t=t+4x2−2x

⇔t2−t−4x2+2x=0t2−t−4x2+2x=0

Δ=1−4(2x−4x2)=(4x−1)2Δ=1−4(2x−4x2)=(4x−1)2

⇒t=1−2xt=1−2x hoặc t=2xt=2x

23 tháng 10 2017

1.1

2.2+5.-1=7.3-1-----v2.2+5.-1=7.3-1

2(.2+x+1)+3(x-1)

3a+b=11a2-19b2

tóm tắt

23 tháng 3 2021

G(x)=0

=> 4x-7-x-14 =0 => 3x -21= 0

=> x=7

23 tháng 3 2021

bạn ơi x=7