K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2016

Vì n+19/n+6 là 1 số tự nhiên

=> n+19 chia hết cho n+6 và được kết quả là 1 số tự nhiên

Ta có: n+19 chia hết cho n+6

=> (n+6)+13 chia hết cho n+6

Vì n+6 chia hết cho n+6  => 13 chia hết cho n+6

=> n+6 thuộc Ư(13)={1;13;-1;-13}

Mà vì n là số tự nhiên => n+6=13

=> n=7

24 tháng 3 2016

A= (n+19)/(n+6)

=> A= (n+6+13)/(n+6)

=> A=1 + 13//(n+6)

để A là số tự nhiên thì (n+6) thuộc ước 13, mà n là số tự nhiên

=> n+6 thuộc tập hợp 1,13

=> n thuộc tập hợp 7

Vậy......

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

16 tháng 3 2017

Đặt A=102+18n-1

=10n-1+18n

=9999...9(n c/số 9)+18n

=9.11111...1(n c/số 1)+9.2n

=9(1111...1(n c/số 1+2n)

mà 111...1(n c/số 1)=n+9q

=>A=9.(9q+n+2n)

=>A=9(9q+3n)

=9.3.(3q+n)

=27(3q+n)

=>\(A⋮27\)

vậy...(đccm)

mấy bài sau dễ òi

bn tự làm nhé

16 tháng 3 2017

Nếu dễ thì bạn làm nốt đi. Mà bạn học lớp nào và ở đâu?

Bằng 45 đó ! k cho mình nhá còn giải để mình làm sau

8 tháng 1 2017

5 đúng rùi

4 tháng 1 2017

45 đó nha 

nhớ k cho mình đó 

4 tháng 1 2017

43 do ban

23 tháng 7 2017

Ta có S(n) + n = 54

=> n là số có 1 chữ số

= (54 - n) : 10

=> n = 54 : 10

= 5,4

Ps: Không chắc đâu nha

23 tháng 7 2017

Ta có: S( n ) + n = 54

=> n là số có 1 chữ số

=> ( 54 - n ) : 10

=> n = 54 : 10

= 5,4

4 tháng 7 2016

Bài nè không bít có được vào CÂU HỎI HAY của OLM không?

1./ Dễ thấy: \(A=3^n+19\)là 1 số chẵn. Nên để A là số chính phương thì A phải chia hết cho 4.

19 chia 4 dư 3 => \(3^n\)chia 4 dư 1 (1)

  • Nếu n lẻ = 2i + 1 thì: \(3^{2i+1}=3\cdot\left(3^2\right)^i=3\cdot\left(8+1\right)^i\)chia 4 dư 3 trái với khẳng định (1)
  • Vậy n chẵn và có dạng n = 2k.

2./ Bài toán trở thành tìm k để: \(A=3^{2k}+19\)là số chính phương.

Viết lại A ở dạng: \(A=\left(3^k\right)^2+19\)

  • k = 0 => A = 20 không phải là số chính phương
  • k = 1 => A = 28 không phải là số chính phương
  • k = 2 => A = 100 là số chính phương 102
  • k >= 3 thì:

\(\left(3^k\right)^2< \left(3^k\right)^2+19=A< \left(3^k\right)^2+2\cdot3^k+1=\left(3^k+1\right)^2\)

A kẹp giữa 2 số chính phương liên tiếp 3k và 3k + 1 nên A không phải là số chính phương.

3./ Kết luận, với duy nhất n = 2k = 4 thì 3n + 19 là số chính phương.