\(A=\frac{1}{5}-\frac{1}{7}+\frac{1}{17}-\frac{1}{31}+\frac{1}{65}-\frac{1}{127}\)Chứng minh \(A<\frac{1}{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/5-1/7+1/17-1/331+1/65-1/127=0,01(sấp sỉ)
Vì kết quả trên nên ta kết luận:
biểu thức trên bé hơn 10
bn tự giải nhé tớ gợi ý cho bn nè
gộp các số bị trừ vào 1 cặp và tất cả số trừ vào 1 cặp
bài này dài lắm
\(A=\frac{\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{25.125}}{\frac{1}{1.26}+\frac{1}{2.27}+\frac{1}{3.28}+...+\frac{1}{100.125}}\)
\(A=\frac{\frac{1}{100}.\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+\frac{1}{3}-\frac{1}{103}+...+\frac{1}{25}-\frac{1}{125}\right)}{\frac{1}{25}.\left(1-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+\frac{1}{3}-\frac{1}{28}+...+\frac{1}{100}-\frac{1}{125}\right)}\)
\(A=\frac{\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}{\frac{1}{25}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\frac{1}{26}-\frac{1}{27}-\frac{1}{28}-...-\frac{1}{125}\right)}\)
\(A=\frac{\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}{\frac{1}{25}.\left(1+\frac{1}{2}+...+\frac{1}{25}+\frac{1}{26}+\frac{1}{27}+...+\frac{1}{100}-\frac{1}{26}-\frac{1}{27}-...-\frac{1}{100}-\frac{1}{101}-...-\frac{1}{125}\right)}\)
\(A=\frac{\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}{\frac{1}{25}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}\)
\(A=\frac{\left(\frac{1}{100}\right)}{\left(\frac{1}{25}\right)}=\frac{1}{4}\)
\(B=\frac{\frac{16}{9}-\frac{16}{127}+\frac{16}{2017}}{\frac{5}{2017}+\frac{5}{9}-\frac{5}{127}}-\frac{\frac{6000}{43}-\frac{6000}{257}-\frac{125}{42}}{\frac{2000}{43}-\frac{250}{252}-\frac{2000}{257}}\)
\(B=\frac{\frac{16}{9}-\frac{16}{127}+\frac{16}{2017}}{\frac{5}{2017}+\frac{5}{9}-\frac{5}{127}}-\frac{\frac{6000}{43}-\frac{6000}{257}-\frac{6000}{2016}}{\frac{2000}{43}-\frac{2000}{2016}-\frac{2000}{257}}\)
\(B=\frac{16.\left(\frac{1}{9}-\frac{1}{127}+\frac{1}{2017}\right)}{5.\left(\frac{1}{2017}+\frac{1}{9}-\frac{1}{127}\right)}-\frac{6000.\left(\frac{1}{43}-\frac{1}{257}-\frac{1}{2016}\right)}{2000.\left(\frac{1}{43}-\frac{1}{2016}-\frac{1}{257}\right)}\)
\(B=\frac{16}{5}-3=\frac{1}{5}\)
Đặt \(C=\frac{1}{2007^2}+\frac{1}{2006^2}+\frac{1}{2005^2}+...+\frac{1}{7^2}+\frac{1}{6^2}+\frac{1}{5^2}\)
\(C=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2005^2}+\frac{1}{2006^2}+\frac{1}{2007^2}\)
\(C< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{2004.2005}+\frac{1}{2005.2006}+\frac{1}{2006.2007}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2005}-\frac{1}{2006}+\frac{1}{2006}-\frac{1}{2007}\)
\(=\frac{1}{4}-\frac{1}{2017}\left(đpcm\right)\)
\(C>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{2005.2006}+\frac{1}{2006.2007}+\frac{1}{2007.2008}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{2006}-\frac{1}{2007}+\frac{1}{2007}-\frac{1}{2008}\)
\(=\frac{1}{5}-\frac{1}{2008}\left(đpcm\right)\)
Vậy \(A>\frac{1}{2007^2}+\frac{1}{2006^2}+\frac{1}{2005^2}+...+\frac{1}{7^2}+\frac{1}{6^2}+\frac{1}{5^2}>B\)
\(a)\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{-2}{5}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{-1}{4}+\frac{2}{7}+\frac{5}{7}+\frac{3}{5}\)
\(\Rightarrow\frac{2}{6}+\frac{1}{6}+\frac{-3}{5}\le x< -1+1+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{-3}{5}\le x< \frac{3}{5}\)
\(\Rightarrow\frac{-1}{10}\le x< \frac{6}{10}\)
\(\Rightarrow-1\le x< 6\)
\(\Rightarrow x\in\left\{-1;0;1;2;3;4;5\right\}\)
Bài b tương tự
\(\frac{\frac{1}{4}+\frac{1}{24}+\frac{1}{124}}{\frac{3}{4}+\frac{3}{24}+\frac{3}{124}}+\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{127}}{\frac{3}{7}+\frac{3}{17}+\frac{3}{127}}=\frac{\frac{1}{4}+\frac{1}{24}+\frac{1}{124}}{3\left(\frac{1}{4}+\frac{1}{24}+\frac{1}{124}\right)}+\frac{2\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{127}\right)}{3\left(\frac{1}{7}+\frac{1}{17}+127\right)}=\frac{1}{3}+\frac{2}{3}=\) \(1\)
\(M=\frac{2.\left(\frac{1}{7}-\frac{1}{13}+\frac{1}{23}\right)}{-5.\left(\frac{1}{7}-\frac{1}{13}+\frac{1}{23}\right)}+\frac{\frac{1}{17}-\frac{1}{23}+\frac{1}{31}}{3.\left(\frac{1}{17}-\frac{1}{23}+\frac{1}{31}\right)}=-\frac{2}{5}+\frac{1}{3}=\frac{1}{15}.\)