cho x,y,z đôi một khác nhau và\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)tinh gi của biểu thức A=\(\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xz}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)nhân lần lượt với x; y; z, ta có:
\(1+\frac{x}{y}+\frac{x}{z}=0\)(1)
\(1+\frac{y}{z}+\frac{y}{x}=0\)(2)
\(1+\frac{z}{x}+\frac{z}{y}=0\)(3)
Từ: (1); (2) và (3) => \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}+\frac{y}{x}+\frac{z}{y}=-3\)(*)
Mặt khác: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)quy đồng ta có:
\(\frac{\left(xy+yz+zx\right)}{xyz}=0\)hay xy + yz + zx = 0
Hay: \(\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right).\left(xy+yz+zx\right)=0\)
Khai triển, ta có:
\(\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}+\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{z}{x}+\frac{y}{x}+\frac{z}{y}=0\)
Vậy: \(\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=-\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}+\frac{y}{x}+\frac{z}{y}\right)=3\)
1/x + 1/y +1/z = 0
<=> xy+yz+zx = 0
<=> yz=-xy-zx
<=> yz/x^2+2yz = yz/x^2+yz-xy-zx = yz/(x-y).(x-z)
Tương tự : xz/y^2+2xz = xz/(y-x).(y-z) ; xy/z^2+2xy = xy/(z-x).(z-y)
=> A = yz/(x-y).(x-z) + xz/(y-x).(y-z) + xy/(z-x).(z-y)
= -yz.(y-z)-zx.(z-x)-xy.(x-y)/(x-y).(y-z).(z-x)
= z^2y-y^2z+x^2z-xz^2+y^2x-x^2y/(x-y).(y-z).(z-x)
= (x-y).(y-z).(z-x)/(x-y).(y-z).(z-x)
= 1
Tk mk nha
https://olm.vn/hoi-dap/question/255332.html
Bạn tham khảo ở đây nhé!! Cách của mình cũng giống của bạn này
Bạn tham khảo tại đây:
Câu hỏi của trieu dang - Toán lớp 8 - Học toán với OnlineMath
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{\left(yz+xz+xy\right)}{xyz}=0\)
\(\Rightarrow yz+zx+xy=0\)
Ta có : \(x^2+2yz=x^2+yz+yz\)
\(=x^2+yz-zx-xy\)
\(=x\left(x-z\right)-y\left(x-z\right)\)
\(=\left(x-y\right)\left(x-z\right)\)
Tương tự : \(y^2+2xz=y^2+xz+xz\)
\(=y^2+xz-xy-yz\)
\(=y\left(y-x\right)+z\left(x-y\right)\)
\(=\left(x-y\right)\left(z-y\right)\)
\(z^2+2xy=\left(x-z\right)\left(y-z\right)\)
\(\Rightarrow M=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(x-y\right)\left(z-y\right)}+\frac{xy}{\left(x-z\right)\left(y-z\right)}\) \(M=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)
\(M=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{yz\left(y-z\right)-xz\left(x-y+y-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)
\(A=\frac{\left(yz-xz\right)\left(y-z\right)+\left(xy-xz\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\Rightarrow\hept{\begin{cases}xy=-yz-xz\\yz=-xy-xz\\xz=-yz-xy\end{cases}}\)
\(x^2+yz+yz=x^2-xy-xz+yz=x.\left(x-y\right)-z.\left(x-y\right)=\left(x-y\right).\left(x-z\right)\)
tương tự bn phân tích rồi quy đồng về mẫu chung :))
Đk: x,y,z khác 0.
ta có: \(\left(y-z\right)^2\ge0\Rightarrow y^2+z^2\ge2yz\Leftrightarrow x^2+y^2+z^2\ge x^2+2yz\Leftrightarrow\frac{yz}{x^2+2yz}\ge\frac{yz}{x^2+y^2+z^2}\)
tương tự thì \(A\ge\frac{xy}{x^2+y^2+z^2}+\frac{yz}{x^2+y^2+z^2}+\frac{xz}{x^2+y^2+z^2}=\frac{xy+yz+xz}{x^2+y^2+z^2}\)
từ đề bài =>\(\frac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\)
=> A =0