Hãy rút gọn phân thức sau: x/x-1 -x/x+1 +2/x^2-1
Mình cần gấp!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2\left(x+\sqrt{x}\right)}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=x+\sqrt{x}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x+\sqrt{x}\)
Ta có : \(x^2+3x+2=x^2-2x+1+5x-5+6\)
\(=\left(x-1\right)^2+5\left(x-1\right)+6\)
\(\left(x-1\right)^3-3x\left(x-1\right)^2+3x^2\left(x-1\right)+x^3\)
\(=x^3-3x^2+3x-1+3x^3-3x^2+x^3-3x\left(x^2-2x+1\right)\)
\(=5x^3-6x^2-1-3x^3+6x^2-3x\)
\(=2x^3-3x-1\)
\(\Leftrightarrow2A=2+2^2+2^3+...+2^{2022}\\ \Leftrightarrow2A-A=2+2^2+...+2^{2022}-1-2-2^2-...-2^{2021}\\ \Leftrightarrow A=2^{2022}-1\\ \Leftrightarrow A+1=2^{2022}\)
Mà \(A+1=2^x\Leftrightarrow x=2022\)
a) \(\dfrac{x^3-1}{x^2+x+1}=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}=x-1\)
b) \(\dfrac{x^2+2xy+y^2}{2x^2+xy-y^2}\)
\(=\dfrac{\left(x+y\right)^2}{x^2+xy+x^2-y^2}=\dfrac{\left(x+y\right)^2}{x\left(x+y\right)+\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{\left(2x-y\right)\left(x+y\right)}=\dfrac{x+y}{\left(2x-y\right)}\)
c) \(\dfrac{ax^4-a^4x}{a^2+ax+x^2}\)
\(=\dfrac{ax\left(x^3-a^3\right)}{a^2+ax+x^2}\)
\(=\dfrac{ax\left(x-a\right)\left(a^2+ax+x^2\right)}{a^2+ax+x^2}\)
\(=ax\left(x-a\right)\)
\(\left(3x-1\right)^2-9x\left(x+1\right)\)
\(=9x^2-6x+1-9x^2-9x\)
=-15x+1
alo chào bn ạ,bn kb vs mình nha mình ib rồi ạ
\(=\dfrac{x^2+x-x^2+x+2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2x+2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x-1}\)