K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔPDN và ΔPMB có

góc PDN=góc PMB

góc DPN=góc MPB

=>ΔPDN đồng dạng với ΔPMB

=>PD/PM=DN/MB=AN/AM

Xét ΔQNE và ΔQCM có

góc QNE=góc QCM 

góc NQE=góc CQM

=>ΔQNE đồng dạng với ΔQCM

=>QN/QC=NE/CM=QE/QM=AN/AM

=>QE/QM=DP/PM

=>MP/PD=MQ/QE

=>PQ//DE

=>PQ//BC

1 tháng 6 2023

Cám ơn Bạn có lời giải giúp mình ! Lập luận rõ ràng chặt chẽ. Tuy thế có tình tiết xin cùng bàn luận thêm để cùng chia sẻ, mong bạn thông cảm. Đề toán cho.( M  tùy chọn trênBC, N tùy chọn trênAM, DE là đường thẳng song song với BC sao cho cắt các cạnh bên của tam giác tại D và E)...Vì lẽ đó phải chăng cần làm rõ thêm ?...

 

2 tháng 2 2018

  A B C D M P 1 1

Xét \(\Delta ABM\) và \(\Delta PDA\) có :

\(\widehat{B}=\widehat{D}=90^0\left(gt\right);\widehat{A_1}=\widehat{P_1}\left(SLT\right)\) \(\Rightarrow\) \(\Delta ABM\) Đồng dạng với \(\Delta PDA\)  (g - g)

\(\Rightarrow\frac{AB}{AM}=\frac{PD}{AP}\)(1)

Ta lại có \(\frac{AB}{AP}=\frac{AD}{AP}\)(2)

\(\Delta ADP\) Vuông tại D \(\Rightarrow AD^2+DP^2=AP^2\)(3)

Từ (1);(2);(3) \(\Rightarrow\frac{AB^2}{AM^2}+\frac{AB^2}{AP^2}=\frac{PD^2}{AP^2}+\frac{AD^2}{AP^2}=\frac{PD^2+AD^2}{AP^2}=\frac{AP^2}{AP^2}=1\)

\(\Leftrightarrow AB^2\left(\frac{1}{AM^2}+\frac{1}{AP^2}\right)=1\Rightarrow\frac{1}{AM^2}+\frac{1}{AP^2}=\frac{1}{AB^2}\)(ĐPCM)