tinh nhanh :A=(1-1/2).(1-1/4).(1-1/90)...(1-1/10000)
B=(1/1*3+1).(1/2*4+1).1/3*5+1)...(1/99*101+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1.2.3+2.3.4+....+99.100.101
4A=1.2.3.4+2.3.4.(5-1)+3.4.5.(6-2)+....+98.99.100.(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-3.4.5.2+....+98.99.100.101-98.99.100.97
4A=98.99.100.101
4A=97990200
A=97990200/4
A=24497550
B=1.2+3.4+5.6+7.8+8.9+...+999.1000
3B=1.2.3+2.3.(4-1)+3.4(5-2)+....+998.999(1001-998)
3B=1.2.3+2.3.4-2.3.1+3.4.5-3.4.2+....+998.999.1001-998.999.998
3B=999.1000.1001
3B=999999000
B=999999000/3
B=333333000
C=1+4+9+16+25+36+.....+10000
C=1^2+2^2+3^2+4^2+5^2+6^2+....+100^2
C=(1^2+3^2+5^2+.....+99^2)+(2^2+4^2+6^2+....+100^2)
C=99.100.101/6 + 100.101.102/6
C=166650 +171700
C=338350
Còn câu d bạn dựa vào câu c là làm được ngay bây h mk mỏi tay rùi ko muốn đánh nữa khi nào rảnh mk gửi công thức cho nha bây h mk bận rùi.
chúc bn học tốt
A=1.2.3+2.3.4+....+99.100.101
4.A=1.2.3.(4-0)+2.3.4.(5-1)+...+99.100.101.(102-98)
4.A=1.2.3.1-0.1.2.3+2.3.4.5-1.2.3.4+....+99.100.101.102-98.99.100.101
4.A=99.100.101.102
A=\(\frac{99.100.101.102}{4}\)
B=1.2+2.3+3.4+...+999.1000
3.B=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+999.1000.(1001-998)
3.B=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+999.1000.1001-998.999.1000
3.B=999.1000.1001
=>B=\(\frac{999.1000.1001}{3}\)
C và D dễ lắm bạn tự làm nhé
\(A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{9999}{10000}\\ =\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot...\cdot\dfrac{99\cdot101}{100\cdot100}\\ =\dfrac{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot99\cdot101}{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot100\cdot100}\\ =\dfrac{\left(1\cdot2\cdot3\cdot...\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot...\cdot101\right)}{\left(2\cdot3\cdot4\cdot...\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot...\cdot100\right)}\\ =\dfrac{1\cdot101}{100\cdot2}\\ =\dfrac{101}{200}\)
\(C=\left(1+\dfrac{1}{1\cdot3}\right)\cdot\left(1+\dfrac{1}{2\cdot4}\right)\cdot\left(1+\dfrac{1}{3\cdot5}\right)\cdot...\left(1+\dfrac{1}{99\cdot101}\right)\\ =\left(\dfrac{1\cdot3}{1\cdot3}+\dfrac{1}{1\cdot3}\right)\cdot\left(\dfrac{2\cdot4}{2\cdot4}+\dfrac{1}{2\cdot4}\right)\cdot\left(\dfrac{3\cdot5}{3\cdot5}+\dfrac{1}{3\cdot5}\right)\cdot...\cdot\left(\dfrac{99\cdot101}{99\cdot101}+\dfrac{1}{99\cdot101}\right)\\ =\left(\dfrac{2^2-1}{1\cdot3}+\dfrac{1}{1\cdot3}\right)\cdot\left(\dfrac{3^2-1}{2\cdot4}+\dfrac{1}{2\cdot4}\right)\cdot\left(\dfrac{4^2-1}{3\cdot5}+\dfrac{1}{3\cdot5}\right)\cdot...\cdot\left(\dfrac{100^2-1}{99\cdot101}+\dfrac{1}{99\cdot101}\right)\\ =\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot...\cdot\dfrac{100^2}{99\cdot101}\\ =\dfrac{2^2\cdot3^2\cdot4^2\cdot...\cdot100^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot99\cdot101}\\ =\dfrac{\left(2\cdot3\cdot4\cdot...\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot...\cdot100\right)}{\left(1\cdot2\cdot3\cdot...\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot...\cdot101\right)}\\ =\dfrac{100\cdot2}{1\cdot101}=\dfrac{200}{101}\)
a) A = 2 + 4 + 6 + 8 + ... + 1000
Ta có : A = 2 + 4 + 6 + 8 + ... + 1000 ( có 500 số )
= (1000 + 2) . 500 : 2 = 250500
c) \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
Bạn giỏi bạn làm đi đã ngu zồi thích tỏ ra minh ngu hơn. Bạn sợ bạn nếu ko nói câu đấy người ta tưởng bạn khôn chắc
\(\)\(A=\frac{3}{1\times3}+\frac{3}{3\times5}+...+\frac{3}{49\times51}\)
\(\Leftrightarrow A=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(\Leftrightarrow A=\frac{3}{2}.\left(1-\frac{1}{51}\right)\)
\(\Leftrightarrow A=\frac{3}{2}.\frac{50}{51}\)
\(\Leftrightarrow A=\frac{25}{17}\)
\(\)\(\)
A=0/2*0/4*0/90*0/10000
A=
A=0*0*...*0
A=0