K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2016

Ta có : x/y = z/t => x/z = y/t = 2x+3y/2z+3t = 2x-3y/2z-3t => a=2; b=3

10 tháng 3 2016

a, b đâu ra hay vậy bạn(giả thiết có đâu?)

10 tháng 3 2016

\(\frac{2z+3t}{az+bt}\)đấy pn ak

10 tháng 3 2016

Từ \(\frac{x}{y}=\frac{z}{t}\Rightarrow\frac{x}{z}=\frac{y}{t}\)

\(\Rightarrow\frac{2x}{2z}=\frac{3y}{3t}\)

Theo t/c dãy tỉ số=nhau:

\(\frac{2x}{2z}=\frac{3y}{3t}=\frac{2x+3y}{2z+3t}=\frac{2x-3y}{2z-3t}\Leftrightarrow\frac{2x+3y}{2x-3y}=\frac{2z+3t}{2z-3t}\) (1)

Mà theo đề ta có: \(\frac{2x+3y}{2x-3y}=\frac{2z+3t}{az-bt}\) (20

từ (1);(2) \(\Rightarrow\frac{2z+3t}{2z-3t}=\frac{2z+3t}{az-bt}\Rightarrow2z-3t=az-bt\Rightarrow a=2;b=3\Rightarrow a+b=5\)

Vậy a+b=5

(*) bn sửa lại đề nhé:az-bt chứ ko phải là az+bt

17 tháng 8 2017

Ta có: 

\(\left(\frac{a+b}{c+d}\right)^2\)\(=\frac{\left(a+b\right).\left(a+b\right)}{\left(c+d\right).\left(c+d\right)}\)\(=\frac{a.a+b.b}{c.c+d.d}\)\(=\frac{a^2+b^2}{c^2+d^2}\)

\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\).

5 tháng 11 2017

14 tháng 10 2021

a, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

b, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{3a}{4c}=\dfrac{4b}{4d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

 

 

14 tháng 10 2021

c, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)

Do đó \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

d, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Do đó \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)