Bài 7 : So sánh A và B :
A = 2010 + 2011 / 2011 + 2012
B = 2010 / 2011 + 2011 / 2012
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2010}{2011}>\frac{2010}{2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012}\)
Nên \(\frac{2010}{2011}+\frac{2011}{2012}>\frac{2010+2011}{2011+2012}\)\(\Rightarrow A>B\)
So sánh: \(\frac{2010}{2011}+\frac{2011}{2012}\) với \(\frac{2010+2011}{2011+2012}\)
\(A=\left(1-\frac{1}{2011}\right)-\left(1-\frac{1}{2012}\right)+\left(1-\frac{1}{2013}\right)-\left(1-\frac{1}{2014}\right)\)
\(=1-\frac{1}{2011}-1+\frac{1}{2012}+1-\frac{1}{2013}-1+\frac{1}{2014}\)
\(=\left(1-1+1-1\right)-\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}+\frac{1}{2014}\right)\)
còn lại bó tay @@
\(A=\frac{2010}{2011}-\frac{2011}{2012}+\frac{2012}{2013}-\frac{2013}{2014}\)
và
\(B=\frac{1}{2010.2011}-\frac{1}{2012.2013}\)
Q=2010+2011+2012/2011+2012+2013
Q=2010/2011+2012+2013 + 2011/2011+2012+2013 + 2012/2011+2012+2013
TA CÓl: 2010/2011>2010/2011+2012+2013
2011/2012>2011/2011+2012+2013
2012/2013>2012/2011+2012+2013
=> P>Q
Có : \(2009+2010>\dfrac{2009}{2010}\) ; \(2011+2012>\dfrac{2011}{2012}\)
\(\dfrac{2011}{2010}>1\) ; \(\dfrac{2010}{2011}< 1\) \(\Rightarrow\dfrac{2011}{2010}>\dfrac{2010}{2011}\)
Ta có : \(2009+2010+\dfrac{2011}{2010}+2011+2012>\dfrac{2009}{2010}+\dfrac{2010}{2011}+\dfrac{2011}{2012}\)
\(\Leftrightarrow B>A\)
Hay \(A< B\)
Bạn ơi cho mình hỏi. Đây có phải bài trog toán tuổi thơ ko?
A = 1-1/2011+1-1/2012 = 2-(1/2011+1/2012) > 1 ( vì 1/2011+1/2012 < 1 )
B = 4021/4023 = 1-2/4023 < 1
=> A > B
k mk nha