giải hpt
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=-1\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6. \(\left\{{}\begin{matrix}2y-4=0\\3x+y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}4x-6y=2\\x-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\\dfrac{2+6y}{4}-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-2\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}=1\\2x+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\left(1-\dfrac{y}{2}\right).3\\6\left(1-\dfrac{y}{2}\right)+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(1-\dfrac{y}{2}\right)\\y=\left(VNghiệm\right)\end{matrix}\right.\Leftrightarrow\) không tồn tại x, y
(Các câu khác tương tự nhé.)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2+xy\right)\left(x^2+y^2-xy\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^2+y^2-xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\xy=2\end{matrix}\right.\)
\(\Rightarrow x^2+\left(\dfrac{2}{x}\right)^2=5\)
\(\Leftrightarrow x^4-5x^2=4=0\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\\left(x+\dfrac{1}{x}\right)^2-\left(y+\dfrac{1}{y}\right)^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)\left(x+\dfrac{1}{x}-y-\dfrac{1}{y}\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\x+\dfrac{1}{x}-y-\dfrac{1}{y}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}=5\\y+\dfrac{1}{y}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+1=0\\y^2-2y+1=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
a)\(\left\{{}\begin{matrix}\dfrac{10}{\sqrt{12x-3}}+\dfrac{5}{\sqrt{4y+1}}=1\\\dfrac{7}{\sqrt{12x-3}}+\dfrac{8}{\sqrt{4y+1}}=1\end{matrix}\right.\)
ĐK: \(x>\dfrac{1}{4};y>-\dfrac{1}{4}\), đặt \(a=\dfrac{1}{\sqrt{12x-3}};b=\dfrac{1}{\sqrt{4y+1}}\)với a,b>0
khi đó, ta có hệ phương mới \(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}80a+40b=8\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}45a=3\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35.\dfrac{1}{15}+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\b=\dfrac{1}{15}\end{matrix}\right.\)
thay \(\dfrac{1}{\sqrt{12x-3}}=a\) hay \(\dfrac{1}{\sqrt{12x-3}}=\dfrac{1}{15}\Rightarrow\sqrt{12x-3}=15\Leftrightarrow12x-3=225\Leftrightarrow12x=228\Leftrightarrow x=19\left(TMĐK\right)\) thay \(\dfrac{1}{\sqrt{4y+1}}=b\) hay
\(\dfrac{1}{\sqrt{4y+1}}=\dfrac{1}{15}\Rightarrow\sqrt{4y+1}=15\Leftrightarrow4y+1=225\Leftrightarrow4y=224\Leftrightarrow y=56\left(TMĐK\right)\)
Vậy (x;y)=(9;56) là nghiệm duy nhất của hệ phương trình đã cho.
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=4\\x\left(1+4y\right)+y=2\end{matrix}\right.\)
ĐK: x,y#0, khi đó \(\dfrac{1}{x}+\dfrac{1}{y}=4\Rightarrow x+y=4xy\)
Do đó \(x\left(1+4y\right)+y=2\Leftrightarrow x+4xy+y=2\Leftrightarrow x+x+y+y=2\Leftrightarrow2\left(x+y\right)=2\Leftrightarrow x+y=1\)
Mà \(4xy=x+y\Leftrightarrow4xy=1\Leftrightarrow xy=\dfrac{1}{4}\)
Vậy \(x+y=1;xy=\dfrac{1}{4}\)
Do đó x,y là nghiệm của phương trình:
\(t^2-t+\dfrac{1}{4}=0\)
\(\Delta=b^2-4ac=1-4.1.\dfrac{1}{4}=0\)
Phương trình có nghiêm kép \(x_1=x_2=-\dfrac{b}{2a}=-\dfrac{-1}{2}=\dfrac{1}{2}\)
\(\Rightarrow x=y=\dfrac{1}{2}\left(nhận\right)\)
Vậy (x;y)=\(\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) là nghiệm duy nhất của hệ phương trình đã cho.
\(\left\{{}\begin{matrix}\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\\\dfrac{x+5}{2}-\dfrac{y+7}{3}=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}+\dfrac{1}{4}-\dfrac{y}{3}+\dfrac{2}{3}=\dfrac{1}{12}\\\dfrac{x}{2}+\dfrac{5}{2}-\dfrac{y}{3}-\dfrac{7}{3}=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=-\dfrac{5}{6}\\\dfrac{x}{2}-\dfrac{y}{3}=-\dfrac{25}{6}\end{matrix}\right.\) (vô lý)
Vậy HPT vô nghiệm
\(\left\{{}\begin{matrix}\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{2}\\\dfrac{x+5}{2}=\dfrac{x+7}{3}-4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{3\left(2x+1\right)}{12}-\dfrac{4\left(y-2\right)}{12}=\dfrac{6}{12}\\\dfrac{3\left(x+5\right)}{6}=\dfrac{2\left(x+7\right)}{6}-\dfrac{24}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3\left(2x+1\right)-4\left(y-2\right)=6\\3\left(x+5\right)=2\left(x+7\right)-24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x+3-4y+8=6\\3x+15=2y+14-24\end{matrix}\right.\\ \Leftrightarrow\Leftrightarrow\left\{{}\begin{matrix}6x-4y+11=6\\3x+15=2y-10\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x-4y=-5\\3x-2y=-25\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2\left(3x-2y\right)=-5\\3x-2y=-25\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3x-2y=-\dfrac{5}{2}\\3x-2y=-25\left(vô.lí\right)\end{matrix}\right.\)
Vậy hệ phương trình vô nghiệm
ĐK: `x ne 2; y ne -1`
Đặt `{a=(1/(x-2)),(b=1/(y+1)):}`
Có: `{(2a+b=3),(4a-3b=1):}`
`<=>{(4a+2b=6),(4a-3b=1):}`
`<=>{(2a+b=3),(5b=5):}`
`<=>{(2a+1=3),(b=1):}`
`<=>{(a=1),(b=1):}`
``
`=>{(1/(x-2)=1),(1/(y+1)=1):}`
`<=>{(x-2=1),(y+1=1):}`
`<=>{(x=3),(y=0):}` (TM)
``
Vậy `(x;y)=(3;0)`.
\(\left\{{}\begin{matrix}\dfrac{7}{\sqrt{x}-7}-\dfrac{4}{\sqrt{y}+6}=\dfrac{5}{3}.\\\dfrac{5}{\sqrt{x}-7}+\dfrac{3}{\sqrt{y}+6}=2\dfrac{1}{6}.\end{matrix}\right.\) \(\left(x,y\ge0;x\ne49\right).\)
\(\Leftrightarrow\left\{{}\begin{matrix}7\dfrac{1}{\sqrt{x}-7}-4\dfrac{1}{\sqrt{y}+6}=\dfrac{5}{3}.\\5\dfrac{1}{\sqrt{x}-7}+3\dfrac{1}{\sqrt{y}+6}=\dfrac{13}{6}.\end{matrix}\right.\)
Đặt \(\dfrac{1}{\sqrt[]{x}-7}=a\); \(\dfrac{1}{\sqrt[]{y}+6}=b\left(a,b\ne0\right).\)
\(\Rightarrow\left\{{}\begin{matrix}7a-4b=\dfrac{5}{3}.\\5a+3b=\dfrac{13}{6}.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{3}.\\b=\dfrac{1}{6}.\end{matrix}\right.\) \(\left(TM\right).\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}-7}=\dfrac{1}{3}.\\\dfrac{1}{\sqrt{y}+6}=\dfrac{1}{6}.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-7=3.\\\sqrt{y}+6=6.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=10.\\\sqrt{y}=0.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=100\left(TM\right).\\y=0\left(TM\right).\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất là: \(\left(x;y\right)=\left(100;0\right).\)
Đặt x+y=a; x-2y=b
=>6/a-3/b=3 và 1/a+7/b=2
=>a=5/3 và b=5
=>x+y=5/3 và x-2y=5
=>x=25/9; y=-10/9
ĐKXĐ : x;y \(\ne0\)
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=-1\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=-2\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=-1\\\dfrac{1}{x}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=-1\\x=\dfrac{1}{9}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9+\dfrac{1}{y}=-1\\x=\dfrac{1}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{10}\\x=\dfrac{1}{9}\end{matrix}\right.\)