K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

ta co: (ab+bc+ac)2 - 3abc(a+b+c) = a2b2+ b2c2 + a2c2 + 2a2bc + 2b2ac+ 2c2ab- 3a2bc- 3b2ac- 3c2ab.

=a2b2+ b2c2 + a2c2- a2bc- b2ac-c2ab.

=>cm: a2b2+ b2c2 + a2c2- a2bc- b2ac- c2ab >= 0

<=> 2(a2b2+ b2c2 + a2c2- a2bc- b2ac- c2ab) >=0

<=> (ab- ac)2 + (ab- bc)2 + (bc- ac)2 >=0 (luon dung voi moi a,b,c)

=> dpcm.

24 tháng 4 2021

Ta có:

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\)\(\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

Dấu " = " xảy ra ⇔ a=b

 

 

11 tháng 8 2020

Với điều kiện \(ab+bc+ca+abc=4\) thì \(VP-VT=\frac{bc^2\left(a-b\right)^2+ca^2\left(b-c\right)^2+ab^2\left(c-a\right)^2}{\left(a^2+2b\right)\left(b^2+2c\right)\left(c^2+2a\right)}\ge0\)

12 tháng 8 2020

Cauchy ngược dấu + Svacxo + gt coi 

21 tháng 1 2019

Tu \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)

Hay \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\Leftrightarrow a=b=c\)

Thay vao M ta co: \(M=\dfrac{a\cdot a+a\cdot a+a\cdot a}{a^2+a^2+a^2}=\dfrac{2019}{2019}=\dfrac{2018}{2018}=\dfrac{2017}{2017}=\dfrac{2016}{2015+1}=1\)

22 tháng 1 2019

Cảm ơn bạn nhé.
Bạn cho mình hỏi, làm sao ra được \(\dfrac{2019}{2019}\)vậy ạ?

bn xem trong SGK đi 

22 tháng 3 2016

bạn chưa ra hình vẻ

11 tháng 2 2020

Ta có: \(\text{Σ}_{cyc}\left(a-b\right)^2\ge0\forall a,b,c\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{3}\ge\left(ab+bc+ca\right)\)

Dấu "=" khi a = b = c

11 tháng 2 2020

Đây là bất đằng thức gì vậy bạn ?