Giup Mình Với Mí Bạn ƠI, đang cần gấp, cảm ơn trước:
Chứng Minh:
A=1/2!+2/3!+3/4!+...+99/100!<1
Giải giùm mình thì nhớ có lời giải nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có;
P=( 3+32 ) + ( 33+34 )+....+ (399+3100)
P=1.(3+32 ) + 32.(3+32)+...+ 398. ( 3+32)
P=1.12 + 32.12 + ... + 398. 12
P=12.( 1+32+...+ 398) chia hết cho 12
Lời giải:
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(3A=1-\frac{2}{3}+\frac{3}{3^2}-.....+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow 4A=A+3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(12A=3-1+\frac{1}{3}-\frac{1}{3^2}+...-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
$\Rightarrow 4A+12A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}<3$
$\Rightarrow 16A< 3$
$\Rightarrow A< \frac{3}{16}$
1/1+(-2)+3+(-4)+.....+19+(-20)
=1-2+3-4+.....+19-20
=(1+3+.....+19)-(2+4+.....+20)
={(19+1).[(19-1):2+1]:2}-{(20+2).[(20-2):2+1]:2}
={20.10:2}-{22.10:2}
=10:2.(20-22)
=5.(-2)
=-10
nhưng xl, mk là cn gái ko pải cn trai, muốn ko, thử thj` khắc biết
100-3(x-1)2=52
3(x-1)2=100-52
3(x-1)2=48
(x-1)2=48:3
(x-1)2=16
(x-1)2=42=(-4)2
=> x-1=4 hoặc x-1=-4
TH1:
x-1=4
x=4+1
x=5
TH2:
x-1=-4
x=-4+1
x=-3
Vậy x=5 hoặc x=-3
100 - 3(x - 1)2 = 52
<=> 3(x - 1)2 = 48
<=> (x - 1)2 = 16
<=> (x - 1)2 = 42 = (-4)2
<=> \(\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}}\)
<=> \(\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)
Lời giải:
$A=\underbrace{(100+98+96+....+2)}_{M}-\underbrace{(99+97+....+1)}_{N}$
Tổng số hạng của $M$: $(100-2):2+1=50$
$M=(100+2).50:2=2550$
Tổng số hạng của $N$: $(99-1):2+1=50$
$N=(99+1).50:2=2500$
$A=M-N=2550-2500=50$
Sửa đề: A=100+98+96+...+2-99-97-...-1
=100-99+98-97+...+2-1
=1+1+...+1
=50
Bài này cũng khó:
1/2! +2/3! +3/4! +... + 99/100!
= (1/1! -1/2!) + (1/2! - 1/3!) + (1/3! -1/4!) + .... + (1/99! -1/100!)
=1 - 1/100! <1
Gọi số tự nhiên n. Ta có:
\(\frac{n-1}{n!}=\frac{n+1-1}{n!}=\frac{n+1}{n!}-\frac{1}{n!}=\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\).
Thay n lần lượt bằng 2,3,...,100.Ta có A = \(\frac{1}{1!}-\frac{1}{100!}